Transformative Change Assessment Corpus - Technical Background Report

IPBES Transformative Change Assessment

Authors

Rainer M. Krug

Sebastian Villasante

Sergio Lambertucci

Victoria Reyes Garcia

Arun Agrawal

Karen O’Brien

Lucas Garibaldi

Doi

DOI GitHub release License: CC BY 4.0

Part of the Data Management Report DOI

Disclaimer

This is a technical background document for the IPBES Thematic assessment of the underlying causes of biodiversity loss, determinants of transformative change and options for achieving the 2050 vision for biodiversity. It provides technical details and implementation settings for the data management report of the Transformative Change Assessment Corpus and its usage. The sole purpose of this document is to document the workflows used to produce statistics, figures and maps, to document the source of the data and to make the process transparent and reproducible.

Contributors

Assessment Experts

  • Shannon, Lynne
  • Liao, Chuan
  • Zinngrebe, Yves ORCID
  • Frantzeskaki, Niki ORCID
  • Gurung, Janita ORCID
  • Leventon, Julia ORCID
  • Wickson, Fern
  • Biggs, Oonsie
  • Bennett, Elena
  • Calderón-Contreras, Rafael ORCID
  • Gosnell, Hannah
  • Cantu Fernandez, Mariana
  • Carr, Edward ORCID
  • Benessaiah, Karina ORCID

Data and Knowledge tsu

  • Niamir, Aidin ORCID
  • Gudde, Renske ORCID

Working Title

IPBES_TCA_Corpus

Code repo

Github repository

Build No: 897

Introduction

The literature search for the Transformative Change assessment corpus was conducted using search terms provided by the experts and refined in co-operation with the IPBES task force for data and knowledge management. The search was conducted using OpenAlex, scripted from R to use the OpenAlex API. Search terms for the following searches were defined:

  • Transformative Change,
  • Nature / Environment
  • case studies and
  • additional search terms for specific corpora

To assess the quality of the corpus, sets of key papers were selected by the experts to verify if these are in the corpus. These key papers were selected per chapter / sub-chapter to ensure that the corpus is representative of each chapter.

The following terminology is used in this document:

  • Corpus: A body of works as based on a search on OpenAlex
  • Transformative Change Assessment Corpus: Short: TCA corpus; The corpus resulting from the search terms transformative AND nature
  • Case corpus: The corpus resulting from transformative AND nature AND case
  • work: terminology used for a single document in their datasewt. Each work has a unique OpenAlex id, but not necesarily a DOI.

The following searches are conducted on Title and Abstract only as the availability of fulltexts drops in 2020. OpenAlex “inherited” their initial corpus from Microsoft Academic, which contained a many fulltext articles. After that initial start, other sources were used which did not all include fulltext versions. To eliminate a bias towards fulltext articles, we limited the search to abstracts and titles only.

Schematic Overview

Show the code
#|

basename <- file.path("tca_corpus", "figures", "tca_corpus_overview")

nf <- list.files(
    path = dirname(basename),
    pattern = basename(basename)
) |>
    length()

if (nf < 3) {
    puml <- readLines(file.path("tca_corpus", "input", "tca_corpus.plantuml")) |>
        paste(collapse = "\n") |>
        plantuml::plantuml()

    puml |>
        plantuml::get_graph(
            file = paste0(basename, ".pdf")
        )

    puml |>
        plantuml::get_graph(
            file = paste0(basename, ".svg")
        )

    puml |>
        plantuml::get_graph(
            file = paste0(basename, ".png")
        )
}

Schematic overview of the TCA Corpus as well as othher corpora using the TCA Corpus

Download of Data Files from Zenodo

The data files of the repository are deposited in a separate Zenodo deposit under the doi 10.5281/zenodo.11370839. To re-download these, simply delete the data directory and run this code (or compile the report).

This code will only work after the approval of the assessment, until then, the repository will remain confidential.

Show the code
if (!dir.exists("data")) {
    dir.create("data")
}

fns <- c("cluster.rds", "key_works.rds", "snowball.rds", "gdm.zip")
for (fn in fns) {
    if (!file.exists(fn)) {
        url <- paste0("https://zenodo.org/record/11370840/files/", fn) |>
            download.file(destfile = fn)
    }
}

Search Terms

Here are the search terms used in this document. They were provided by the authors, and some adaptations were done by the tsu for data and knowledge management to adapt them to be suitable for a search in OpenAlex.

Transformative Change

Show the code
cat(params$s_1_transformative_change)
(
    (
        (
            transformation
            OR transition
            OR transformative
            OR "transformative change"
        )
        OR (
            (
                shift
                OR change
            )
            AND (
                fundamental
                OR deep
                OR radical
            )
        )
    )
    AND (
        socio
        OR social
        OR politics
        OR political
        OR governance
        OR economic
        OR cultural
        OR system
        OR technological
        OR inner
        OR personal
        OR financial
        OR business
    )
)
OR (
    (
        "transformative change"
        OR "deliberate transformation"
        OR "transformative turn"
        OR transition
        OR "social-ecological change"
        OR "deep change"
        OR "fundamental alteration"
        OR "profound change"
        OR "profound transformation"
        OR "radical transformation"
        OR "transformational change"
        OR "complete change"
        OR "complete transformation"
        OR "drastic change"
        OR "in-depth transformation"
        OR "progressive change"
        OR "radical alteration"
        OR "radical change"
        OR "revolutionary change"
        OR "significant modification"
        OR "total transformation"
        OR transition
        OR pathway
        OR power
        OR agency
        OR scale
        OR leverage
        OR context
        OR process
        OR regime
        OR shift
        OR views
        OR value
        OR structure
        OR institution
        OR deliberate
        OR structural
        OR fundamental
        OR system
        OR deep
        OR radical
        OR profound
        OR drastic
        OR widespread
        OR political
        OR economical
        OR structur
        OR complete
        OR progressive
        OR revolutionary
        OR substantial
        OR significant
    )
    AND (
        transformation
        OR alteration
        OR change
        OR turn
        OR action
        OR transition
        OR shift
    )
)

Nature

Show the code
#|

cat(params$s_1_nature_environment)
biodiversity
OR marine
OR terrestrial
OR forest
OR woodland
OR grassland
OR savanna
OR shrubland
OR peatland
OR ecosystem
OR lake
OR river
OR sea
OR ocean
OR meadow
OR heathland
OR mires
OR bog
OR tundra
OR biosphere
OR desert
OR mountain
OR "natural resource"
OR estuary
OR fjord
OR fauna
OR flora
OR soil
OR "coastal waters"
OR wetland
OR freshwater
OR marshland
OR marches
OR dryland
OR seascape
OR landscape
OR coast
OR "arable land"
OR "agricultural land"
OR "natural environment"
OR "environmental resource"
OR agroforest
OR "agro-forest"
OR plantation
OR "protected areas"
OR chaparral
OR sustainable
OR environment
OR conservation
OR ecosystem
OR nature
OR planet
OR Earth
OR biosphere
OR ecological
OR "socio-ecological"
OR restoration
OR wildlife
OR landscape
OR species
OR bioeconomy
OR "resource system"
OR "coupled system"
OR nature

Assessment Corpus

Show the code
#|

cat(params$s_1_tca_corpus)
( biodiversity
OR marine
OR terrestrial
OR forest
OR woodland
OR grassland
OR savanna
OR shrubland
OR peatland
OR ecosystem
OR lake
OR river
OR sea
OR ocean
OR meadow
OR heathland
OR mires
OR bog
OR tundra
OR biosphere
OR desert
OR mountain
OR "natural resource"
OR estuary
OR fjord
OR fauna
OR flora
OR soil
OR "coastal waters"
OR wetland
OR freshwater
OR marshland
OR marches
OR dryland
OR seascape
OR landscape
OR coast
OR "arable land"
OR "agricultural land"
OR "natural environment"
OR "environmental resource"
OR agroforest
OR "agro-forest"
OR plantation
OR "protected areas"
OR chaparral
OR sustainable
OR environment
OR conservation
OR ecosystem
OR nature
OR planet
OR Earth
OR biosphere
OR ecological
OR "socio-ecological"
OR restoration
OR wildlife
OR landscape
OR species
OR bioeconomy
OR "resource system"
OR "coupled system"
OR nature ) 
AND 
( (
    (
        (
            transformation
            OR transition
            OR transformative
            OR "transformative change"
        )
        OR (
            (
                shift
                OR change
            )
            AND (
                fundamental
                OR deep
                OR radical
            )
        )
    )
    AND (
        socio
        OR social
        OR politics
        OR political
        OR governance
        OR economic
        OR cultural
        OR system
        OR technological
        OR inner
        OR personal
        OR financial
        OR business
    )
)
OR (
    (
        "transformative change"
        OR "deliberate transformation"
        OR "transformative turn"
        OR transition
        OR "social-ecological change"
        OR "deep change"
        OR "fundamental alteration"
        OR "profound change"
        OR "profound transformation"
        OR "radical transformation"
        OR "transformational change"
        OR "complete change"
        OR "complete transformation"
        OR "drastic change"
        OR "in-depth transformation"
        OR "progressive change"
        OR "radical alteration"
        OR "radical change"
        OR "revolutionary change"
        OR "significant modification"
        OR "total transformation"
        OR transition
        OR pathway
        OR power
        OR agency
        OR scale
        OR leverage
        OR context
        OR process
        OR regime
        OR shift
        OR views
        OR value
        OR structure
        OR institution
        OR deliberate
        OR structural
        OR fundamental
        OR system
        OR deep
        OR radical
        OR profound
        OR drastic
        OR widespread
        OR political
        OR economical
        OR structur
        OR complete
        OR progressive
        OR revolutionary
        OR substantial
        OR significant
    )
    AND (
        transformation
        OR alteration
        OR change
        OR turn
        OR action
        OR transition
        OR shift
    )
) )

Case

Show the code
#|

cat(params$s_1_case)
( biodiversity
OR marine
OR terrestrial
OR forest
OR woodland
OR grassland
OR savanna
OR shrubland
OR peatland
OR ecosystem
OR lake
OR river
OR sea
OR ocean
OR meadow
OR heathland
OR mires
OR bog
OR tundra
OR biosphere
OR desert
OR mountain
OR "natural resource"
OR estuary
OR fjord
OR fauna
OR flora
OR soil
OR "coastal waters"
OR wetland
OR freshwater
OR marshland
OR marches
OR dryland
OR seascape
OR landscape
OR coast
OR "arable land"
OR "agricultural land"
OR "natural environment"
OR "environmental resource"
OR agroforest
OR "agro-forest"
OR plantation
OR "protected areas"
OR chaparral
OR sustainable
OR environment
OR conservation
OR ecosystem
OR nature
OR planet
OR Earth
OR biosphere
OR ecological
OR "socio-ecological"
OR restoration
OR wildlife
OR landscape
OR species
OR bioeconomy
OR "resource system"
OR "coupled system"
OR nature ) 
AND 
( (
    (
        (
            transformation
            OR transition
            OR transformative
            OR "transformative change"
        )
        OR (
            (
                shift
                OR change
            )
            AND (
                fundamental
                OR deep
                OR radical
            )
        )
    )
    AND (
        socio
        OR social
        OR politics
        OR political
        OR governance
        OR economic
        OR cultural
        OR system
        OR technological
        OR inner
        OR personal
        OR financial
        OR business
    )
)
OR (
    (
        "transformative change"
        OR "deliberate transformation"
        OR "transformative turn"
        OR transition
        OR "social-ecological change"
        OR "deep change"
        OR "fundamental alteration"
        OR "profound change"
        OR "profound transformation"
        OR "radical transformation"
        OR "transformational change"
        OR "complete change"
        OR "complete transformation"
        OR "drastic change"
        OR "in-depth transformation"
        OR "progressive change"
        OR "radical alteration"
        OR "radical change"
        OR "revolutionary change"
        OR "significant modification"
        OR "total transformation"
        OR transition
        OR pathway
        OR power
        OR agency
        OR scale
        OR leverage
        OR context
        OR process
        OR regime
        OR shift
        OR views
        OR value
        OR structure
        OR institution
        OR deliberate
        OR structural
        OR fundamental
        OR system
        OR deep
        OR radical
        OR profound
        OR drastic
        OR widespread
        OR political
        OR economical
        OR structur
        OR complete
        OR progressive
        OR revolutionary
        OR substantial
        OR significant
    )
    AND (
        transformation
        OR alteration
        OR change
        OR turn
        OR action
        OR transition
        OR shift
    )
) ) 
AND 
( "case study"
AND (
    "field work"
    OR "concrete case"
    OR empirical
    OR "real world example"
    OR observational
    OR practical
    OR experimental
    OR "in  depth"
    OR "real life case"
    OR ethnography
    OR "specific study"
    OR "illustrative example"
) )

Art

Show the code
#|

cat(params$st_art)
Painting OR
Sculpture OR
Photography OR
Drawing OR
Printmaking OR
Ceramics OR
Performance art OR
"Digital art" OR
Figurative OR
Contemporary OR
Gallery OR
Exhibition OR
"Art history" OR
"Fine arts" OR 
"Art critique" OR
Collage OR
"Street art" OR
Portraiture OR
Minimalism OR
Surrealism OR
Expressionism OR
"Art therapy" OR
"Art education" OR
"Public art" OR
"Art collecting" OR
"Art fairs" OR
"Modern art" OR
Renaissance
Baroque OR
Impressionism OR
Cubism OR
Realism OR
"Art movements" OR
"Conceptual art" OR
"Art funding" OR
"Art workshops" OR
"Art communities" OR
"Art criticism" OR
"Eco art" OR
"Folk art" OR
Muralism OR
"Art residence"

Media

Show the code
#|

cat(params$st_media)
Journalism OR
Broadcasting OR
"Social media" OR
"Digital media" OR
Multimedia OR
News OR
Film OR
Television OR
Radio OR
"Mass communication" OR
"Media ethics" OR
"Public relations" OR
"Media studies" OR
"Media literacy" OR
"Media production" OR
Newspapers OR
Magazines OR
"Media law" OR
"Media platforms" OR
"Media technology" OR
"Cultural media" OR
"Mobile media" OR
Documentary OR
Webcasting OR
"Live streaming" OR
Vlogs OR
"Media campaigns" OR
"Digital storytelling" OR
"Media management" OR
"Media psychology" OR
"Media convergence" OR
"Media networking" OR
"Influencer marketing" OR
"Data journalism" OR
"Media activism" OR
"Citizen journalism" OR
Press OR
"News outlets" OR
"Media outlets"

Strategies and Options

In contrast to the other search terms, this one contains multiple sets of search terms

Show the code
#|

cat(params$sts_strategies_options |> paste0(collapse = "\n"))
# Strategy 1: Conserving and regenerating places of value to nature and people

## Action 1.1: Recognizing and conserving "territories of life"

"Biocultural conservation" OR
"Biosphere reserve" OR
"Community-based management" OR
"Community-led conservation" OR
"Community protocol" OR
"Community quota" OR
"Convivial conservation" OR
"Comanagement" OR
"Customary tenure" OR
"Indigenous and community conserved area" OR
"Indigenous jurisdiction" OR
"Indigenous-led conservation" OR
"Multi-functional landscape" OR
"Other effective area-based conservation measure" OR
"Resource stewardship" OR
"Sacred grove" OR
"Sacred site" OR
"Territories of life" OR
"Tribal park"

## Action 1.2: Enhancing rights-based approaches

"Access and benefit sharing" OR
"Community rights" OR
"Ecocide" OR
"Food sovereignty" OR
"Free prior and informed consent" OR
"FPIC" OR
"Human rights" OR
"Indigenous language" OR
"Indigenous Peoples’ rights" OR
"Indigenous data sovereignty" OR
"Intellectual property rights" OR
"Civil and political rights" OR
"Economic social and cultural rights" OR
"International human rights" OR
"International Labour Organization Convention" OR
"Land sovereignty" OR
"Legal pluralism" OR
"Nature rights" OR
"Rights of nature" OR
"Right to water" OR
"Tenure rights" OR
"Territorial use rights" OR
"Rights of Indigenous Peoples"  OR
"UNDRIP"

## Action 1.3a: Basing conservation on diverse values of nature. Conservation

"Blue park" OR
"Ethical space" OR
"Forest conservation" OR
"Forest reserve" OR
"Habitat protection" OR
"High sea conservation" OR
"Marine managed area" OR
"Marine park" OR
"Marine protected area" OR
"Marine reserve" OR
"National park" OR
"Nature reserve" OR
"Private reserve" OR
"Protected area" OR
"Recreation area" OR
"Transboundary protected area" OR
"Wildlife conservation" OR
"Wildlife reserve"

## Action 1.3b: Basing conservation on diverse values of nature. Management and monitoring

"Coastal governance" OR
"Coastal management" OR
"Coastal monitoring" OR
"Ecosystem-based management" OR
"Environmental impact assessment" OR
"Environmental monitoring" OR
"Environmental remote sensing" OR
"Fish monitoring" OR
"Forest monitoring" OR
"Integrated coastal zone management" OR
"Integrated landscape management" OR
"Invasive alien species management" OR
"Land monitoring" OR
"Marine governance" OR
"Marine mammal monitoring" OR
"Marine monitoring" OR
"Ocean monitoring" OR
"Sustainable land management" OR
"Sustainable wildlife management" OR
"Species monitoring" OR
"Transboundary water management" OR
"Watershed management"

## Action 1.4: Shifting from extractive to regenerative systems

"Biodiversity restoration" OR
"Connectivity restoration" OR
"Ecosystem restoration" OR
"Ecological regeneration" OR
"Ecological restoration" OR
"Environmental regeneration" OR
"Floodplain restoration" OR
"Forest restoration" OR
"Habitat restoration" OR
"Species reintroduction" OR
"Landscape restoration" OR
"Regenerative agriculture" OR
"Regenerative farming" OR
"Regenerative sustainability" OR
"Remedial action" OR
"Rewilding" OR
"Soil restoration" OR
"Restoration ecology"  OR
"Regenerative system"

## Action 1.5: Advancing integrated spatial planning  

"Buffer zone" OR
"Coastal planning" OR
"Development control regulation" OR
"Habitat conservation plan" OR
"Holistic planned grazing" OR
"Infrastructure planning" OR
"Integrated spatial planning" OR
"Land law" OR
"Land use permit" OR
"Land use planning" OR
"Marine spatial planning" OR
"National biodiversity strategy and action plan" OR
"Ocean planning" OR
"Participatory planning" OR
"Spatial planning" OR
"Strategic environmental assessment"

# Strategy 2: Driving systemic change in the sectors most responsible for biodiversity loss and nature’s decline

## Action 2.1a: Regulating resource extraction. Regulation

"Commodity chain regulation" OR
"Consumption regulation" OR
"Consumer tax" OR
"Consumption tax" OR
"Cross-compliance" OR
"Emission caps" OR
"Invasive species regulation" OR
 "Land use regulation" OR
"Land acquisition regulation" OR
"Licensing and permitting" OR
"Logging regulation" OR
"Pollution control" OR
"Resource extraction regulation" OR
"Resource management law" OR
"Regulatory measure" OR
"Resource capping" OR
"Sustainable public procurement" OR
"Trade regulation" OR
"Wildlife trade regulation" OR
"Zoning regulation"

## Action 2.1b: Regulating resource extraction. Standards and certifications

"Certification" OR
"Collaborative supply chain" OR
"Ecolabel" OR
"Environmental certification" OR
"Environmental guideline" OR
"Environmental label" OR
"Environmental standard" OR
"Fair trade certification" OR
"Forest stewardship council certification" OR
"Green branding" OR
"ISO standard" OR
"LEED certification" OR
"Marine stewardship council certification" OR
"Organic certification" OR
"Participatory guarantee system" OR
"Production standards" OR
"Sustainable seafood initiative" OR
"Sustainable sourcing" OR
"Third-party auditing" OR
"Third-party verification" OR
"Seafood watch"  

## Action 2.2a: Embedding technology in transformative frameworks. Green technology

"Biofuel" OR
"Biomass energy production" OR
"Biomimetic" OR
"Climate-smart agriculture" OR
"Coordinated transport" OR
"Cradle-to-cradle" OR
"Digital agriculture" OR
"Fuel-efficient vehicle" OR
"Geothermal energy" OR
"Green building material" OR
"Green technology" OR
"Hybrid vehicle" OR
"Microgrid" OR
"Minigrid" OR
"Renewable energy" OR
"Smart technologies" OR
"Solar panel" OR
"Solar photovoltaic system" OR
"Wind turbine"

## Action 2.2b: Embedding technology in transformative frameworks. Green infrastructure

"Biofilter" OR
"Bioswale" OR
"Constructed wetland" OR
"Energy efficient building" OR
"Green architecture" OR
"Green infrastructure" OR
"Green logistics" OR
"Green roof" OR
"Green street" OR
"Green wall" OR
"Living shoreline" OR
"Multi-purpose structure" OR
"Nature-based solution" OR
"Permeable pavement" OR
"Public transport" OR
"Rain garden" OR
"Riparian buffer" OR
"Sustainable drainage system" OR
"Sustainable infrastructure" OR
"Urban agriculture" OR
"Urban forest" OR
"Urban park" OR
"Vegetated swale" OR
"Water infrastructure"

## Action 2.3: Financing for global sustainability

"Biodiversity finance" OR
"Climate finance" OR
"Conservation finance" OR
"Conservation funding" OR
"Conservation philanthropy" OR
"Conservation trust fund" OR
"Debt-for-nature swap" OR
"Direct funding to community" OR
"Ecological finance" OR
"Environmental finance" OR
"Environmental harmful subsidies" OR
"Harmful subsidies" OR
"Nature finance" OR
"Lost and damage" OR
"Ocean finance" OR
"Public funding for conservation" OR
"Public-private partnership"

## Action 2.4: Supporting civil society initiatives

"Boycott" OR
"Collective action network" OR
"Community garden" OR
"Environmental action" OR
"Environmental advocacy" OR
"Environmental lawsuit" OR
"Environmental mobilization" OR
"Environmental public interest litigation" OR
"Environmental social movement" OR
"Farmers market" OR
"Food cooperative" OR
"Formal petition" OR
"Hunger strike" OR
"Land occupation" OR
"Media-based activism" OR
"Name and shame" OR
"Non-cooperation" OR
"Non-violent protest" OR
"Persuasion" OR
"Public campaign" OR
"Road blockade" OR
"Social innovations" OR
"Social movement" OR
"Strike" OR
"Street protest" OR
"Transition town" OR
"Urban garden"

# Strategy 3: Transforming economic systems for nature and equity

## Action 3.1: Mainstreaming innovative economic tools

"B-Corp" OR
"Biodiversity banking" OR
"Biodiversity compensation" OR
"Biodiversity mitigation bank" OR
"Biodiversity trading" OR
 "Cap and trade" OR
"Cap and share" OR
"Consumer demand for transparency" OR
"Convention against corruption" OR
"Conflict of interest regulation" OR
"Corporate disclosure" OR
"Corporate social responsibility" OR
"Corporate sustainability reporting" OR
"Conservation banking" OR
"Environmental mitigation" OR
"Financial disclosure" OR
"Internalization of externalities" OR
"Market-based finance" OR
"No net loss" OR
"Payment for ecosystem services" OR
"Reducing emissions from deforestation and forest degradation" OR
"Remediation" OR
"True price" OR
"Zero deforestation"

## Action 3.2a: Supporting just transitions. Sustainable production

"Agri-environmental and climate measure" OR
"Agroecology" OR
"Agroforestry" OR
"Biological agriculture" OR
"Best practices for production" OR
"Carbon farming" OR
"Climate-smart agriculture" OR
"Community-supported agriculture" OR
"Conservation tillage" OR
"Crop diversification" OR
"Manufacturing best practices" OR
"Organic agriculture" OR
"Reduced impact logging" OR
"Responsible production" OR
"Sustainable agricultural intensification" OR
"Sustainable aquaculture" OR
"Sustainable design" OR
"Sustainable fishing" OR
"Sustainable production" OR
"Sustainable small-scale fishery" OR
"Swidden agriculture"

## Action 3.2b: Supporting just transitions. Alternative economic models

"Alternative business" OR
"Alternative economic" OR
"Bioeconomy" OR
"Business for nature" OR
"Caring economy" OR
"Circular economy" OR
"Circular bioeconomy" OR
"Degrowth" OR
"Doughnut economics" OR
"Economic of biodiversity" OR
"Ecological economics" OR
"Ecosystem accounting" OR
"Governing the commons" OR
"Mainstreaming biodiversity" OR
"Managing the commons" OR
"Nature positive economy" OR
"Natural capital accounting" OR
"Natural social contract" OR
"Not-for-profit economy" OR
"Regenerative business" OR
"Regenerative capitalism" OR
"Relocalize" OR
"Sharing economy" OR
"Steady state economy" OR
"Wellbeing economics"

## Action 3.3: Reforming financial systems

"Biodiversity offset" OR
"Carbon credit" OR
"Commodity future" OR
"Central bank reform" OR
"Debt relief" OR
"Debt service suspension" OR
"Derivative trading" OR
"Ecological fiscal transfer" OR
"Environmental tax"  OR
"Environmental impact bond" OR
"Green subsidy" OR
"Green public procurement" OR
"Green tax" OR
"Global exchange price" OR
"IMF reform" OR
"Financial reform" OR
"Progressive tax"  OR
"Tax haven" OR
"Reduce inequality" OR
"Subsidy reform" OR
"Sustainable finance" OR
"Tradable permit" OR
"Trade ban" OR
"Tobin tax" OR
"Universal basic income" OR
"Wealth tax" OR
"WTO reform"

## Action 3.4: Adopting new metrics of success

"Better Life Index" OR
"Ecological footprint" OR
"Genuine Progress Indicator" OR
"Genuine saving" OR
"Green GDP" OR
"Gross National Happiness" OR
"Happy Planet Index" OR
"Human Development Index" OR
"Inclusive Wealth Index" OR
"Index of Sustainable Economic Welfare" OR
"Inequality index" OR
"Real wealth" OR
"Social Progress Index" OR
"Thriving Places Index" OR
"System of Environmental Economic Accounting" OR
"Wellbeing budget"  

# Strategy 4: Transforming governance systems to be inclusive, accountable, and adaptive

## Action 4.1: Strengthening biodiversity in integrated governance

"Access to justice" OR
"Anti-corruption measures" OR
"Biodiversity Policy Integration" OR
"Convention against corruption" OR
"Cross-sectoral coordination" OR
"Cross-sectoral planning" OR
"Environmental assessment" OR
"Institutional arrangement" OR
"Institutional independence" OR
"Institutional reform" OR
"Integrated assessment" OR
"Integrated governance" OR
"Integrated public governance" OR
"Judicial independence" OR
"Lobbying regulation" OR
"Measures against corruption" OR
"Policy coherence" OR
"Policy coordination" OR
 "Policy Integration" OR
"Representing biodiversity values" OR
"Strategic planning" OR
"Strategic visioning" OR
"Transparent governance"

## Action 4.2.: Engaging diverse actors in inclusive governance

"Biodiversity councils" OR
"Bottom-up governance" OR
"Citizen assembly" OR
"Collaborative agreement" OR
"Community meeting" OR
"Customary law" OR
"Customary norm" OR
"Deep democracy" OR
"Deliberative democracy" OR
"Engagement of Indigenous peoples and local communities" OR
"Gender sensitive approaches" OR
"Gender responsive governance" OR
"Inclusive governance" OR
"Indigenous governance" OR
"Multi-stakeholder consultation" OR
"Multi-stakeholder partnership" OR
"New social contract" OR
"Participatory decision-making" OR
"Policy co-creation" OR
"Policy co-design" OR
"Public consultation" OR
"Public participation" OR
"Stakeholder engagement"

## Action 4.3.: Securing collaboration and accountability in multilateral governance

"Aichi Biodiversity Target" OR
"BBNJ Treaty" OR
"Bilateral agreements" OR
"Convention on Biological Diversity" OR
"CBD" OR
"Convention on International Trade in Endangered Species" OR
"CITES" OR
"Convention to Combat Desertification" OR
"EU Green Deal" OR
"Inclusive global governance" OR
"International collaboration" OR
"Kyoto Protocol" OR
"Minamata Convention" OR
"Montreal Protocol" OR
"Multilateral agreement" OR
"Multilateral governance" OR
"Multilevel governance" OR
"Nagoya Protocol" OR
"Network governance" OR
"Paris Agreement" OR
"Ramsar Convention" OR
"Polycentric governance" OR
"Rio Declaration" OR
"Rotterdam Convention" OR
"Stockholm Convention" OR
"Sustainable Development Goal"

## Action 4.4.: Strengthening learning through informed, accountable, and adaptive governance

"Access to environmental information" OR
"Accountable governance" OR
"Adaptive governance" OR
"Adaptive management" OR
"Administrative entrepreneurship" OR
"Conflict resolution" OR
"Flexible regulation" OR
"Freedom of information" OR
"Informed governance" OR
"Institutional entrepreneurship" OR
"Iterative decision making" OR
"Iterative planning" OR
"Local governance" OR
"Monitoring evaluation and learning" OR
"Ombudsman" OR
"Open government" OR
"Overcome path-dependencies" OR
"Participatory evaluation" OR
"Press freedom" OR
"Policy monitoring" OR
"Planning monitoring and evaluation" OR
"Reflexive governance" OR
"Risk management" OR
"Whistleblower protection"

# Strategy 5.: Shifting societal views, values, and paradigms to recognize and prioritize the fundamental interconnections between humans and nature that sustain life for all beings

## Action 5.1.: Increasing nature connectedness

"Balanced relationship" OR
"Biophilia" OR
"Caring for nature" OR
"Connecting with nature" OR
"Ecocentrism" OR
"Ecohealth" OR
"Environmental connection" OR
"Environmental stewardship" OR
"Harmony with nature" OR
"Holistic worldview" OR
"Human-nature connectedness" OR
"Human-nature relationship" OR
"Intrinsic value" OR
"Indigenous worldview" OR
"Nature connectedness" OR
"One health" OR
"Planetary health" OR
"Planetary wellbeing" OR
"Relational values" OR
"Spiritual connection" OR
"Unitive vision" OR
"Utilitarian value"

## Action 5.2.: Shifting culture through new narratives

"Awareness campaign" OR
"Choice architecture" OR
"Community dialogue" OR
"Cultural narrative" OR
"Cultural transformation" OR
"Environmental discourse" OR
"Environmental narrative" OR
"Environmental perspective" OR
"Environmental storytelling" OR
"Green discourse" OR
"Green marketing" OR
"Green narrative" OR
"Green perspective" OR
"Mass media campaign"  OR
"Peer-to-peer communication" OR
"Regenerative culture" OR
 "Unitive narrative" OR
"Youth empowerment"

## Action 5.3.: Changing social norms

"Behavioral nudge" OR
"Collaborative consumption" OR
"Consumption reduction" OR
"Dietary transition" OR
"Ethical consumerism" OR
"Food waste reduction" OR
"Frugal consumption" OR
"Green consumption" OR
"Localized food system" OR
"Lifestyle change" OR
"Minimalist lifestyle" OR
"Normative feedback" OR
"Nudging" OR
"Plant-based diet" OR
"Reduce consumption" OR
"Recycling" OR
"Responsible consumption" OR
"Reusing" OR
"Shared consumption" OR
"Shared ownership" OR
"Simple living" OR
"Sustainable consumption" OR
"Sustainable use" OR
"Sustainable practices" OR
"Zero waste"

## Action 5.4. Facilitating transformative learning

"Adult learning" OR
"Capacity building" OR
"Capacity development" OR
"Cultural exchange" OR
"Cultural revitalization" OR
"Environmental curriculum" OR
"Environmental education" OR
"Experiential learning" OR
"Experiential teaching" OR
"Inner development" OR
"Inner transformation" OR
"Indigenous education" OR
"Inner capacity" OR
"Personal transformation" OR
"Practical learning" OR
"Sacred teaching" OR
"Social learning" OR
"Solution space" OR
"Transformation lab" OR
"Transformative learning" OR
"Transformational learning" OR
"Unitive education"

## Action 5.5. Co-creating knowledge

"Art-science collaboration" OR
"Boundary spanning" OR
"Citizen science" OR
"Co-creative inquiry" OR
"Co-creation of knowledge" OR
"Co-design" OR
"Collaborative knowledge production" OR
"Collaborative research and learning" OR
"Collective knowledge generation" OR
"Community-based participatory research" OR
"Epistemic justice" OR
"Interfaith collaboration" OR
"Interfaith dialogue" OR
"Joint knowledge development" OR
"Jointly constructed knowledge" OR
"Knowledge brokerage" OR
"Knowledge co-creation" OR
"Knowledge co-design" OR
"Knowledge coproduction" OR
"Mode-2 knowledge production" OR
"Multiple evidence-based approach" OR
"Participatory action research" OR
"Transdisciplinary research" OR
"Weaving knowledge"

Actors

In contrast to the other search terms, this one contains multiple sets of search terms

Show the code
#|

cat(params$sts_actors |> paste0(collapse = "\n"))
# Sector 1: Civil society

## Civil society organizations

"Affinity group" OR
"Citizen group" OR
"Civil society organization" OR
"Community-based organization" OR
"Community leader" OR
"Consumer group" OR
"Co-op" OR
"Coop" OR
"Cultural group" OR
"Faith-based organization" OR
"Faith community" OR
"Grassroots organization" OR
"Human rights organization" OR
"Neighborhood" OR
"Non-profit organization" OR
"Labor organization" OR
"Labor union" OR
"Professional association" OR
"Religious group" OR
"Religious institution" OR
"Religious organization" OR
"Self-help group" OR
"Social organization" OR
"Trade union" OR
"Voluntary organization" OR
"Welfare organization"  OR
"Youth group" OR
"Youth organization" OR
"Women’s group"

## Environmental movements/activists

"Advocacy group" OR
"Conservation group" OR
"Conservation organization" OR
"Environmental defender" OR
"Environmental group" OR
"Environmental justice movement" OR
"Environmental movement" OR
"Environmental organization" OR
"Environmental social movement" OR
"Environmental activist" OR
"Environmental advocate" OR
"Environmental protester" OR
"Environmental campaigner" OR
"Environmental leader" OR
"Environmental reformer" OR
"Ocean defender"

## Indigenous people

"Aboriginal" OR
"Adivasi" OR
"Autochthonous People" OR
"First Australian" OR
"First Nations" OR
"First People" OR
"Indigenous People" OR
"Native American" OR
"Native People" OR
"Original inhabitant" OR
"Traditional community" OR
"Tribal community" OR
"Tribes"

## Individual citizens

"Adolescent" OR
"Champion of the earth" OR
"Change agent" OR
"Change-maker" OR
"Citizen" OR
"Common people" OR
"Consumer" OR
"Individual citizen" OR
"Lay person" OR
"Lay people" OR
"Millenial" OR
"Neighbour" OR
"Teenager" OR
"Youth" OR
"Woman"

## Local communities

"Agricultural worker" OR
"Artisanal fisher" OR
"Coastal community" OR
"Community association" OR
"Farmer" OR
"Fisher" OR
"Fishmonger" OR
"Fishing community" OR
"Forest dweller" OR
"Gatherer" OR
"Herbalist" OR
"Hunter" OR
"Forest users group" OR
"Local community" OR
"Miner" OR
"Pastoralist" OR
"Peasant" OR
"Poacher" OR
"Smallholder" OR
"Small-scale fishing community" OR
"Trader" OR
"Village committee" OR
"Village group"

## NGO

"Conservation International" OR
"Conservation NGO" OR
"Development NGO"  OR
"Environmental non-governmental organization" OR
"Environmental NGO" OR
"Greenpeace" OR
"Independent sector" OR
"Non-state actor" OR
"The Nature Conservancy" OR
"TNC" OR
"Third-sector organisation" OR
"Oceana" OR
"World Wide Fund for Nature" OR
"WWF"

# Sector 2: Private sector

## Business

"Board of directors" OR
"Business" OR
"Business owner" OR
"Business partner" OR
"CEO" OR
"Chamber of commerce" OR
"Company" OR
"Contractor" OR
"Enterprise" OR
"Entrepreneur" OR
"Farm manager" OR
"Farm owner" OR
"Firm" OR
"Franchise" OR
"Logger" OR
"Logging company" OR
"Mining company" OR
"Mining concession"  OR
"Park manager" OR
"Plantation manager" OR
"Plantation owner" OR
"Producer" OR
"Rancher" OR
"Shareholder" OR
"Stockholder" OR
"Supplier" OR
"Vendor"

## Donor/foundations

"Benefactor" OR
"Charity" OR
"Charitable organization" OR
"Donor" OR
"Funding agency" OR
"Funding body" OR
"Grantmaker" OR
"Grant-making" OR
"Environmental defence fund" OR
"Fundraiser" OR
"Impact investor" OR
"Philanthropic organization" OR
"Social investor" OR
"Sponsor"

## Financial actors

"Asset management company" OR
"Bank" OR
"Bank for international settlement" OR
"Central bank" OR
"Clearinghouse" OR
"Commercial bank" OR
"Credit rating agency" OR
"Federal reserve system" OR
"Financial Action Task Force" OR
"Financial stability board" OR
"Fintech companies" OR
"Insurance company" OR
"International Monetary Fund" OR
"Investment bank" OR
"Micro-banking" OR
"Micro-credit" OR
"Pension fund" OR
"Private equity firm" OR
"Regulatory authority" OR
"Securities and exchange commission" OR
"Settlement system" OR
"Stock exchange" OR
"Venture capital firm" OR
"World Bank"

# Sector 3: Government

## Intergovernmental organizations

"Earth System Governance" OR
"European Environmental Agency" OR
"EEA" OR
"Global Environment Facility" OR
"GEF" OR
"Intergovernmental Panel on Climate Change" OR
"IPCC" OR
"Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services" OR
"IPBES" OR
"Intergovernmental organization" OR
"International Union for Conservation of Nature" OR
"IUCN" OR
"United Nations Development Programme" OR
"UNDP" OR
"United Nations Framework Convention on Climate Change" OR
"UNFCCC" OR
"World Conservation Monitoring Centre"  

## Justice system

"Attorney" OR
"Bailiff" OR
"Correctional officer" OR
"Court clerk" OR
"Court interpreter" OR
"Defense attorney" OR
"Forensic expert" OR
"Judge" OR
"Judicial officer" OR
"Jury" OR
"Law enforcement officer" OR
"Lawyer" OR
"Legal aid organization" OR
"Legal assistant" OR
"Legal professional" OR
"Magistrate" OR
"Paralegal" OR
"Parole officer" OR
"Probation officer" OR
"Prosecutor" OR
"Victim advocate"

## Local/regional government

"City councillor" OR
"City council" OR
"County commission" OR
"County commissioner" OR
"County government" OR
"Local administrator" OR
"Local board" OR
"Local government" OR
"Local official" OR
"Mayor" OR
"Municipal government" OR
"Municipality" OR
"Prefecture" OR
"Provincial government" OR
"Regional government" OR
"State government"

## National government

"Civil servant" OR
"Congress" OR
"Department of environment" OR
"Government officer" OR
"Internal security agency"  OR
"Military" OR
"Minister" OR
"Ministry" OR
"Member of congress" OR
"Member of parliament" OR
"National government" OR
"Parliament" OR
"Political party" OR
"Police" OR
"Policymaker" OR
"Royalty" OR
"Social service agency" OR
"Treasury department"

# Sector 4: Communication and knowledge

## Education

"Curriculum developer" OR
"Educator" OR
"Guidance counsellor" OR
"Headmaster" OR
"Headmistress" OR
"Higher education institution" OR
"Instructor" OR
"Principal" OR
"School" OR
"School board" OR
"School student" OR
"School teacher" OR
"Teachers association" OR
"Technical institute" OR
"Training institute"

## Media and communication

"Blogger" OR
"Digital platform" OR
"Documentary" OR
"Editor-in-chief" OR
"Filmmaker" OR
"Freelancer" OR
"Journalist" OR
"Magazine" OR
"Newspaper" OR
"News broadcast" OR
"News website" OR
"Online media" OR
"Photojournalist" OR
"Podcast" OR
"Radio station" OR
"Reporter" OR
"Social media platform" OR
"Television" OR
"Website"

## Networks

"Advocacy coalition" OR
"Advocacy network" OR
"Boundary organization" OR
"Boundary spanner" OR
"Broker" OR
"Collaborative sustainability initiative" OR
"Community network" OR
"Global action network" OR
"Indigenous peoples network" OR
"Knowledge-action network" OR
"Learning network" OR
"Living lab" OR
"Multi-stakeholder platform" OR
"Partnership network" OR
"Policy network" OR
"Social network" OR
"Sustainability facilitator" OR
"Technology network" OR
"Transition intermediary"

## Scientific community

"Academic institution" OR
"College" OR
"Lecturer" OR
"Professor" OR
"Research agency" OR
"Research and development agency" OR
"Research center" OR
"Research institute" OR
"Research organization" OR
"Scientific institution" OR
"Scientific society" OR
"Scientific association" OR
"Scientist" OR
"Technology transfer office" OR
"Think tank" OR
"University"  

Methods

Get and calculate Data from OpenAlex

These data is gathered from OpenAlex directly, not using the downloaded TCA Corpus. The data is used to assess the quality of the TCA Corpus.

Show the code
#|

fn <- file.path("tca_corpus", "data", "search_term_hits.rds")
if (!file.exists(fn)) {
    s_t <- grep("s_1_", names(params), value = TRUE)
    search_term_hits <- parallel::mclapply(
        s_t,
        function(stn) {
            message("getting '", stn, "' ...")
            if (grepl("_f_", stn)) {
                search <- params[[stn]]()
            } else {
                search <- params[[stn]]
            }
            search <- compact(search)
            openalexR::oa_query(filter = list(title_and_abstract.search = search)) |>
                openalexR::oa_request(count_only = TRUE, verbose = TRUE) |>
                unlist()
        },
        mc.cores = params$mc.cores,
        mc.preschedule = FALSE
    ) |>
        do.call(what = cbind) |>
        t() |>
        as.data.frame() |>
        dplyr::mutate(page = NULL, per_page = NULL) |>
        dplyr::mutate(count = formatC(count, format = "f", big.mark = ",", digits = 0))

    rownames(search_term_hits) <- s_t |>
        gsub(pattern = "s_1_", replacement = "") |>
        gsub(pattern = "f_", replacement = "") |>
        gsub(pattern = "^ch", replacement = "Chapter ") |>
        gsub(pattern = "_", replacement = " ")

    saveRDS(search_term_hits, file = fn)
} else {
    search_term_hits <- readRDS(fn)
}
Show the code
#|

fn <- file.path(".", "tca_corpus", "data", "additional_search.rds")
if (!file.exists(fn)) {
    # oa
    st <- params$s_1_tca_corpus |>
        compact()

    count_all <- openalexR::oa_fetch(title_and_abstract.search = st, count_only = TRUE, verbose = TRUE, output = "list")$count

    # art
    st <- paste0("(", params$s_1_tca_corpus, ") AND (", params$st_art, ")") |>
        compact()
    count <- openalexR::oa_fetch(title_and_abstract.search = st, count_only = TRUE, verbose = TRUE, output = "list")$count

    result <- data.frame(
        Category = "Art",
        Count = count,
        Proportion = count / count_all,
        Timestamp = Sys.time()
    )

    # media
    st <- paste0("(", params$s_1_tca_corpus, ") AND (", params$st_media, ")") |>
        compact()

    count <- openalexR::oa_fetch(title_and_abstract.search = st, count_only = TRUE, verbose = TRUE, output = "list")$count

    result <- rbind(
        result,
        data.frame(
            Category = "Media",
            Count = count,
            Proportion = count / count_all,
            Timestamp = Sys.time()
        )
    )

    # imaginative
    st <- paste0("(", params$s_1_tca_corpus, ") AND (", params$st_imaginative, ")") |>
        compact()

    count <- openalexR::oa_fetch(title_and_abstract.search = st, count_only = TRUE, verbose = TRUE, output = "list")$count

    result <- rbind(
        result,
        data.frame(
            Category = "Imaginative",
            Count = count,
            Proportion = count / count_all,
            Timestamp = Sys.time()
        )
    )

    # Rights of Nature
    st <- paste0("(", params$s_1_tca_corpus, ") AND (", params$st_rights_of_nature, ")") |>
        compact()

    count <- openalexR::oa_fetch(title_and_abstract.search = st, count_only = TRUE, verbose = TRUE, output = "list")$count

    result <- rbind(
        result,
        data.frame(
            Category = "Rights of Nature",
            Count = count,
            Proportion = count / count_all,
            Timestamp = Sys.time()
        )
    )

    # Initiative
    st <- paste0("(", params$s_1_tca_corpus, ") AND (", params$st_initiative, ")") |>
        compact()

    count <- openalexR::oa_fetch(title_and_abstract.search = st, count_only = TRUE, verbose = TRUE, output = "list")$count

    result <- rbind(
        result,
        data.frame(
            Category = "Initiative",
            Count = count,
            Proportion = count / count_all,
            Timestamp = Sys.time()
        )
    )

    # Creativity
    st <- paste0("(", params$s_1_tca_corpus, ") AND (", params$st_creativity,  ")") |>
        compact()

    count <- openalexR::oa_fetch(title_and_abstract.search = st, count_only = TRUE, verbose = TRUE, output = "list")$count

    result <- rbind(
        result,
        data.frame(
            Category = "Creativity",
            Count = count,
            Proportion = count / count_all,
            Timestamp = Sys.time()
        )
    )

    # save it
    saveRDS(result, file = fn)
}
Show the code
#|

fn <- file.path(".", "tca_corpus", "data", "key_papers.rds")
if (!file.exists(fn)) {
    key_papers <- lapply(
        params$key_papers,
        function(fn) {
            message("Processing '", fn, "' ...")
            sapply(
                fn,
                function(x) {
                    read.csv(x) |>
                        select(DOI)
                }
            ) |>
                unlist()
        }
    )
    names(key_papers) <- gsub("\\.csv", "", basename(params$key_papers))

    key_papers <- list(
        Ch_1 = unlist(key_papers[grepl("Ch 1 -", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_2 = unlist(key_papers[grepl("Ch 2 -", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_3_Cl_1 = unlist(key_papers[grepl("Ch 3 - Cl1", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_3_Cl_3 = unlist(key_papers[grepl("Ch 3 - Cl3", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_3_Cl_4 = unlist(key_papers[grepl("Ch 3 - Cl4", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_3_Cl_5 = unlist(key_papers[grepl("Ch 3 - Cl5", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_3_Cl_6 = unlist(key_papers[grepl("Ch 3 - Cl6", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_3 = unlist(key_papers[grepl("Ch 3 - p", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_4_Cl_1 = unlist(key_papers[grepl("Ch 4 - Challenge 1", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_4_Cl_2 = unlist(key_papers[grepl("Ch 4 - Challenge 2", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_4_Cl_3 = unlist(key_papers[grepl("Ch 4 - Challenge 3", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_4_Cl_4 = unlist(key_papers[grepl("Ch 4 - Challenge 4", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_4_Cl_5 = unlist(key_papers[grepl("Ch 4 - Challenge 5", names(key_papers))], recursive = FALSE) |> as.vector(),
        Ch_5 = unlist(key_papers[grepl("Ch 5 -", names(key_papers))], recursive = FALSE) |> as.vector()
    )

    saveRDS(key_papers, file = fn)
} else {
    key_papers <- readRDS(fn)
}
Show the code
#|

fn_kw <- file.path(".", "tca_corpus", "data", "key_works.rds")
fn_kw_df <- file.path(".", "tca_corpus", "data", "key_works_df.rds")
if (!all(file.exists(fn_kw, fn_kw_df))) {
    key_works <- parallel::mclapply(
        key_papers,
        function(kp) {
            dois <- kp[kp != ""] |>
                unlist() |>
                tolower() |>
                unique()

            openalexR::oa_fetch(doi = dois, output = "list")
        },
        mc.cores = params$mc.cores,
        mc.preschedule = FALSE
    )

    found <- sapply(
        key_works,
        function(x) {
            length(x) > 0
        }
    )

    key_works <- key_works[found]

    print("The following key paper sets were excluded as they contained no papers in OpenAlex:\n")
    print(names(found)[!found])

    saveRDS(key_works, file = fn_kw)

    key_works_df <- lapply(
        key_works,
        oa2df,
        entity = "works"
    )

    saveRDS(key_works_df, fn_kw_df)
} else {
    key_works <- readRDS(file = fn_kw)
    key_works_df <- readRDS(fn_kw_df)
}
Show the code
#|

fn <- file.path(".", "tca_corpus", "data", "key_works_hits.rds")
if (!file.exists(fn)) {
    kws <- key_works_df
    kws$all <- key_works_df |>
        bind_rows()

    nms <- names(kws)

    key_works_hits <- pbapply::pblapply(
        nms,
        function(nm) {
            message("Getting key paper set for ", nm, " ...")
            dois <- kws[[nm]] |>
                select(doi) |>
                distinct() |>
                unlist() |>
                unique() |>
                tolower()

            s_t <- grep("s_1_", names(params), value = TRUE)
            kw_h <- parallel::mclapply(
                s_t,
                function(stn) {
                    message("  getting '", stn, "' ...")
                    if (grepl("_f_", stn)) {
                        search <- compact(params[[stn]]())
                    } else {
                        search <- compact(params[[stn]])
                    }
                    get_count(dois = dois, list(title_and_abstract.search = search), verbose = FALSE)
                },
                mc.cores = params$mc.cores,
                mc.preschedule = FALSE
            ) |>
                do.call(what = cbind) |>
                as.data.frame()
            message("Done")

            names(kw_h) <- s_t

            # if (ncol(kw_h) == 1){
            #     kw_h <- t(kw_h)
            #     rownames(kw_h) <- dois
            # }

            kw_h <- rbind(
                kw_h,
                colSums(kw_h)
            )

            rownames(kw_h)[[nrow(kw_h)]] <- "Total"
            return(kw_h)
        }
    )

    names(key_works_hits) <- nms

    for (i in nms) {
        # key_works_hits[[i]] <- cbind(
        #     key_works_hits[[i]],
        #     key_works_hits_tca_filtered[[i]]
        # )

        key_works_hits[[i]] <- cbind(
            key_works_hits[[i]],
            Total = rowSums(key_works_hits[[i]])
        ) |>
            mutate(Total = Total - 1) # |>
        # relocate(tca_corpus_SDG, .after = s_1_tca_corpus)
    }

    ###

    saveRDS(key_works_hits, file = fn)
} else {
    key_works_hits <- readRDS(file = fn)
}
Show the code
#|

fn <- file.path(".", "tca_corpus", "data", "tca_corpus_languages.rds")

if (!file.exists(fn)) {
    list(
        timestamp <- Sys.time(),
        languages = openalexR::oa_fetch(
            entity = "works",
            title_and_abstract.search = compact(params$s_1_tca_corpus),
            group_by = "language",
            output = "list",
            verbose = TRUE
        ) |>
            lapply(
                function(x) {
                    result <- data.frame(
                        language = ifelse(
                            is.null(x["key_display_name"]),
                            as.character(NA),
                            as.character(x["key_display_name"])
                        ),
                        count = ifelse(
                            is.null(x["count"]),
                            as.integer(NA),
                            as.integer(x["count"])
                        )
                    )
                    return(result)
                }
            ) |>
            do.call(what = rbind) |>
            dplyr::arrange(desc(count)) |>
            dplyr::filter(count > 0)
    ) |>
        saveRDS(file = fn)
}

Works over Time

Get works over time for the different search terms

Show the code
#|

fn <- file.path(".", "tca_corpus", "data", "oa_count.rds")
if (!file.exists(fn)) {
    oa_count <- list(
        timestamp = Sys.time()
    )
    #
    message("OpenAlex ...")
    oa_count$oa_years <- openalexR::oa_fetch(
        entity = "works",
        search = "",
        group_by = "publication_year",
        output = "dataframe",
        verbose = TRUE
    ) |>
        dplyr::mutate(
            publication_year = as.integer(as.character(key_display_name)),
            key = NULL,
            key_display_name = NULL,
            p = count / sum(count)
        ) |>
        dplyr::arrange(publication_year) |>
        dplyr::mutate(
            p_cum = cumsum(p)
        ) |>
        dplyr::select(
            publication_year,
            everything()
        )
    #
    message("NATURE ...")
    oa_count$tca_nature <- openalexR::oa_fetch(
        title_and_abstract.search = compact(paste0("(", params$s_1_nature_environment, ")")),
        group_by = "publication_year",
        output = "dataframe",
        verbose = TRUE
    ) |>
        dplyr::mutate(
            publication_year = as.integer(as.character(key_display_name)),
            key = NULL,
            key_display_name = NULL,
            p = count / sum(count)
        ) |>
        dplyr::arrange(publication_year) |>
        dplyr::mutate(
            p_cum = cumsum(p)
        ) |>
        dplyr::select(
            publication_year,
            everything()
        )
    #
    message("TransformatveChange ...")
    oa_count$transformative_change_years <- openalexR::oa_fetch(
        title_and_abstract.search = compact(paste0("(", params$s_1_transformative_change, ")")),
        group_by = "publication_year",
        output = "dataframe",
        verbose = TRUE
    ) |>
        dplyr::mutate(
            publication_year = as.integer(as.character(key_display_name)),
            key = NULL,
            key_display_name = NULL,
            p = count / sum(count)
        ) |>
        dplyr::arrange(publication_year) |>
        dplyr::mutate(
            p_cum = cumsum(p)
        ) |>
        dplyr::select(
            publication_year,
            everything()
        )
    #
    message("TCA ...")
    oa_count$tca_years <- openalexR::oa_fetch(
        title_and_abstract.search = compact(paste0("(", params$s_1_tca_corpus, ")")),
        group_by = "publication_year",
        output = "dataframe",
        verbose = TRUE
    ) |>
        dplyr::mutate(
            publication_year = as.integer(as.character(key_display_name)),
            key = NULL,
            key_display_name = NULL,
            p = count / sum(count)
        ) |>
        dplyr::arrange(publication_year) |>
        dplyr::mutate(
            p_cum = cumsum(p)
        ) |>
        dplyr::select(
            publication_year,
            everything()
        )
    #
    message("CASE ...")
    oa_count$case_years <- openalexR::oa_fetch(
        title_and_abstract.search = compact(paste0("(", params$s_1_case, ")")),
        group_by = "publication_year",
        output = "dataframe",
        verbose = TRUE
    ) |>
        dplyr::mutate(
            publication_year = as.integer(as.character(key_display_name)),
            key = NULL,
            key_display_name = NULL,
            p = count / sum(count)
        ) |>
        dplyr::arrange(publication_year) |>
        dplyr::mutate(
            p_cum = cumsum(p)
        ) |>
        dplyr::select(
            publication_year,
            everything()
        )
    #
    saveRDS(oa_count, file = fn)
}

Download TCA Corpus

The corpus download will be stored in data/pages and the arrow database in data/corpus.

This is not on GitHub!

The corpus can be read by running get_corpus() which opens the database, so that then it can be fed into a dplyr pipeline. After most dplyr functions, the actual data needs to be collected via collect().

Only then is the actual data read!

Needs to be enabled by setting eval: true in the code block below.

Show the code
#|

tic()

IPBES.R::corpus_download(
    pages_dir = params$pages_dir,
    title_and_abstract_search = compact(params$s_1_tca_corpus),
    continue = TRUE,
    delete_pages_dir = FALSE,
    set_size = 2000,
    dry_run = FALSE,
    verbose = TRUE,
    mc_cores = 6
)

toc()
Show the code
tic()

IPBES.R::corpus_pages_to_arrow(
    pages_dir = params$pages_dir,
    arrow_dir = params$corpus_dir,
    continue = TRUE,
    delete_arrow_dir = FALSE,
    dry_run = FALSE,
    verbose = TRUE,
    mc_cores = 2
)

toc()
Show the code
#|

years <- IPBES.R::corpus_read(params$corpus_dir) |>
    distinct(publication_year) |>
    collect() |>
    unlist() |>
    as.vector() |>
    sort()

lapply(
    years,
    function(y) {
        message("\nProcessing year: ", y)
        tic()
        dataset <- IPBES.R::corpus_read(params$corpus_dir) |>
            dplyr::filter(publication_year == y) |>
            dplyr::collect() |>
            group_by(id) |>
            slice_max(
                publication_year,
                n = 1,
                with_ties = FALSE,
                na_rm = TRUE
            )
        unlink(
            file.path(params$corpus_dir, paste0("publication_year=", y)),
            recursive = TRUE,
            force = TRUE
        )
        arrow::write_dataset(
            dataset = dataset,
            path = params$corpus_dir,
            partitioning = c("publication_year", "set"),
            format = "parquet",
            existing_data_behavior = "overwrite"
        )
        toc()
    }
)
Show the code
corpus_read(params$corpus_dir) |>
    dplyr::distinct(doi) |>
    dplyr::rename(
        tca_corpus_dois = doi
    ) |>
    dplyr::collect() |>
    write.csv(
        file = file.path("tca_corpus", "data", "corpus_tca_dois.csv"), row.names = FALSE
    )

Download TCA and CASE Corpi

Show the code
#|

tic()

IPBES.R::corpus_download(
    pages_dir = params$pages_cases_dir,
    title_and_abstract_search = compact(params$s_1_case),
    continue = TRUE,
    delete_pages_dir = FALSE,
    set_size = 1999,
    dry_run = FALSE,
    verbose = TRUE,
    mc_cores = 8
)

toc()
Show the code
tic()

IPBES.R::corpus_pages_to_arrow(
    pages_dir = params$pages_cases_dir,
    arrow_dir = params$corpus_cases_dir,
    continue = TRUE,
    delete_arrow_dir = FALSE,
    dry_run = FALSE,
    verbose = TRUE,
    mc_cores = 2
)

toc()
Show the code
#|

years <- IPBES.R::corpus_read(params$corpus_cases_dir) |>
    distinct(publication_year) |>
    collect() |>
    unlist() |>
    as.vector() |>
    sort()

lapply(
    years,
    function(y) {
        message("\nProcessing year: ", y)
        tic()
        dataset <- IPBES.R::corpus_read(params$corpus_cases_dir) |>
            dplyr::filter(publication_year == y) |>
            dplyr::collect() |>
            group_by(id) |>
            slice_max(
                publication_year,
                n = 1,
                with_ties = FALSE,
                na_rm = TRUE
            )
        unlink(
            file.path(params$corpus_cases_dir, paste0("publication_year=", y)),
            recursive = TRUE,
            force = TRUE
        )
        arrow::write_dataset(
            dataset = dataset,
            path = params$corpus_cases_dir,
            partitioning = c("publication_year", "set"),
            format = "parquet",
            existing_data_behavior = "overwrite"
        )
        toc()
    }
)
Show the code
corpus_read(params$corpus_cases_dir) |>
    dplyr::distinct(doi) |>
    dplyr::rename(
        tca_corpus_dois = doi
    ) |>
    dplyr::collect() |>
    write.csv(
        file = file.path("tca_corpus", "data", "corpus_cases_dois.csv"), row.names = FALSE
    )

Export 250 Random Works from Cases Corpus

Show the code
#|

sample_size <- 250

fn <- file.path("tca_corpus", "data", paste0("random_", sample_size, "_tca_cases_corpus.xlsx"))
if (!file.exists(fn)) {
    set.seed(13)
    read_corpus(params$corpus_cases_dir) |>
        dplyr::select(
            id,
            doi,
            author = author_abbr,
            title = display_name,
            abstract = ab
        ) |>
        dplyr::slice_sample(
            n = sample_size
        ) |>
        dplyr::mutate(
            abstract = substr(abstract, 1, 5000)
        ) |>
        dplyr::collect() |>
        writexl::write_xlsx(path = fn)
}

Extract Data from Global Corpus

Export Random Works from TCA Cases Corpus

Show the code
#|

sample_size <- 250

fn <- file.path("tca_corpus", "data", paste0("random_", sample_size, "_tca_cases_corpus.xlsx"))
if (!file.exists(fn)) {
    set.seed(13)
    read_corpus(params$corpus_cases_dir) |>
        dplyr::select(
            id,
            doi,
            author = author_abbr,
            title = display_name,
            abstract = ab
        ) |>
        dplyr::slice_sample(
            n = sample_size
        ) |>
        dplyr::mutate(
            abstract = substr(abstract, 1, 5000)
        ) |>
        dplyr::collect() |>
        writexl::write_xlsx(path = fn)
}

Sectors

The Sectors definition is based on the subfields assigned to each work by OpenAlex. These were grouped by experts into sectors. See this Google Doc for details.

Show the code
#|

if (!dir.exists(params$corpus_topics_dir)) {
    con <- duckdb::dbConnect(duckdb::duckdb(), read_only = FALSE)

    corpus_read(params$corpus_dir) |>
        arrow::to_duckdb(table_name = "corpus", con = con) |>
        invisible()
    corpus_read(file.path("tca_corpus", "input", "sectors_def.parquet")) |>
        arrow::to_duckdb(table_name = "sectors", con = con) |>
        invisible()

    paste0(
        "CREATE VIEW corpus_unnest AS ",
        "SELECT  ",
        "corpus.id AS work_id,  ",
        "corpus.publication_year AS publication_year,  ",
        "UNNEST(topics).i AS i,  ",
        "UNNEST(topics).score AS score,  ",
        "UNNEST(topics).name AS name, ",
        "UNNEST(topics).id AS id,  ",
        "UNNEST(topics).display_name AS display_name  ",
        "FROM  ",
        "corpus "
    ) |>
        dbExecute(conn = con)

    select_sql <- paste0(
        "SELECT ",
        "corpus_unnest.*, ",
        "sectors.sector ",
        "FROM ",
        "corpus_unnest ",
        "LEFT JOIN ",
        "sectors ",
        "ON ",
        "corpus_unnest.id  == sectors.id "
    )

    dbGetQuery(con, paste(select_sql, "LIMIT 10"))

    sql <- paste0(
        "COPY ( ",
        select_sql,
        ") TO '", params$corpus_topics_dir, "' ",
        "(FORMAT PARQUET, COMPRESSION 'SNAPPY', PARTITION_BY 'publication_year')"
    )

    dbExecute(con, sql)

    duckdb::dbDisconnect(con, shutdown = TRUE)

    ###########################

    # years <- IPBES.R::corpus_read(params$corpus_dir) |>
    #     distinct(publication_year) |>
    #     collect() |>
    #     unlist() |>
    #     as.vector() |>
    #     sort()

    # sectors <- read.csv(file.path("tca_corpus", "input", "sectors_def.csv")) |>
    #     tibble::as_tibble() |>
    #     dplyr::mutate(
    #         id = paste0("https://openalex.org/subfields/", id),
    #         display_name = NULL
    #     )

    # pbmcapply::pbmclapply(
    #     years,
    #     function(y) {
    #         message("\nProcessing year: ", y)
    #         IPBES.R::corpus_read(params$corpus_dir) |>
    #             dplyr::filter(publication_year == y) |>
    #             dplyr::select(
    #                 id,
    #                 publication_year,
    #                 topics
    #             ) |>
    #             collect() |>
    #             IPBES.R::extract_topics(
    #                 names = "subfield"
    #             ) |>
    #             dplyr::left_join(
    #                 y = sectors,
    #                 by = "id"
    #             ) |>
    #             arrow::write_dataset(
    #                 path = params$corpus_topics_dir,
    #                 partitioning = c("publication_year"),
    #                 format = "parquet",
    #                 existing_data_behavior = "overwrite"
    #             )
    #     },
    #     mc.cores = 3,
    #     mc.preschedule = FALSE
    # )
}

Authors

Show the code
#|

if (!dir.exists(params$corpus_authors_dir)) {
    con <- duckdb::dbConnect(duckdb::duckdb(), read_only = FALSE)

    corpus_read(params$corpus_dir) |>
        arrow::to_duckdb(table_name = "corpus", con = con) |>
        invisible()

    paste0(
        "CREATE VIEW corpus_unnest AS ",
        "SELECT  ",
        "corpus.id AS work_id,  ",
        "corpus.publication_year AS publication_year,  ",
        "UNNEST(author).au_id AS au_id,  ",
        "UNNEST(author).au_display_name AS au_display_name, ",
        "UNNEST(author).au_orcid AS au_orcid,  ",
        "UNNEST(author).author_position AS author_position,  ",
        "UNNEST(author).is_corresponding AS is_corresponding,  ",
        "UNNEST(author).au_affiliation_raw AS au_affiliation_raw,  ",
        "UNNEST(author).institution_id AS institution_id,  ",
        "UNNEST(author).institution_display_name AS institution_display_name,  ",
        "UNNEST(author).institution_ror AS institution_ror,  ",
        "UNNEST(author).institution_country_code AS institution_country_code,  ",
        "UNNEST(author).institution_type AS institution_type,  ",
        "UNNEST(author).institution_lineage AS institution_lineage  ",
        "FROM  ",
        "corpus "
    ) |> dbExecute(conn = con)

    paste0(
        "COPY ( ",
        "SELECT * FROM corpus_unnest ",
        ") TO '", params$corpus_authors_dir, "' ",
        "(FORMAT PARQUET, COMPRESSION 'SNAPPY', PARTITION_BY 'publication_year')"
    ) |>
        dbExecute(conn = con)

    duckdb::dbDisconnect(con, shutdown = TRUE)
}

Primary Topics

Show the code
fn <- file.path(".", "tca_corpus", "data", paste0("prim_topics_tca_corpus.rds"))
if (!file.exists(fn)) {
    prim_topics_tca_corpus <- corpus_read(params$corpus_topics_dir) |>
        dplyr::filter(
            name == "topic",
            i == 1
        ) |>
        mutate(
            id = as.integer(sub("https://openalex.org/T", "", id))
        ) |>
        dplyr::group_by(id) |>
        summarize(
            count = n()
        ) |>
        dplyr::left_join(
            read.csv(file.path("tca_corpus", "input", "OpenAlex_topic_mapping_table - final_topic_field_subfield_table.csv")),
            by = c("id" = "topic_id")
        ) |>
        dplyr::arrange(desc(count)) |>
        collect()

    saveRDS(prim_topics_tca_corpus, file = fn)
} else {
    prim_topics_tca_corpus <- readRDS(fn)
}

Figures

Show the code
#|

fn <- file.path(".", "tca_corpus", "data", "publications_over_time_tca_corpus.rds")

if (!file.exists(fn)) {
    read_corpus(params$corpus_dir) |>
        dplyr::select(publication_year) |>
        dplyr::arrange(publication_year) |>
        dplyr::collect() |>
        table() |>
        as.data.frame() |>
        mutate(
            publication_year = as.integer(as.character(publication_year)),
            p = Freq / sum(Freq),
            p_cum = cumsum(p)
        ) |>
        rename(
            count = Freq
        ) |>
        dplyr::inner_join(
            y = openalexR::oa_fetch(
                search = "",
                group_by = "publication_year",
                output = "tibble",
                verbose = FALSE
            ) |>
                dplyr::select(
                    key,
                    count
                ) |>
                dplyr::rename(
                    publication_year = key,
                    count_oa = count
                ) |>
                dplyr::arrange(publication_year) |>
                dplyr::mutate(
                    publication_year = as.integer(as.character(publication_year)),
                    p_oa = count_oa / sum(count_oa),
                    p_oa_cum = cumsum(p_oa)
                )
        ) |>
        saveRDS(file = fn)
}
Show the code
#|

if (length(list.files(file.path("tca_corpus", "figures"), pattern = "publications_over_time")) < 2) {
    figure <- readRDS(file.path(".", "tca_corpus", "data", "publications_over_time_tca_corpus.rds")) |>
        dplyr::filter(publication_year >= 1900) |>
        ggplot() +
        geom_bar(aes(x = publication_year, y = p), stat = "identity") +
        geom_line(aes(x = publication_year, y = p_cum / 10), color = "red") +
        geom_line(aes(x = publication_year, y = p_oa_cum / 10), color = "blue") +
        scale_x_continuous(breaks = seq(1900, 2020, 10)) +
        scale_y_continuous(
            "Proportion of publications",
            sec.axis = sec_axis(~ . * 10, name = "Cumulative proportion") # divide by 100 to scale back the secondary axis
        ) +
        labs(
            title = "Publications over time",
            x = "Year",
            y = "Number of publications"
        ) +
        theme_minimal() +
        theme(axis.text.y.right = element_text(color = "red"))

    ggplot2::ggsave(
        file.path("tca_corpus", "figures", "publications_over_time.pdf"),
        width = 12,
        height = 6,
        figure
    )
    ggplot2::ggsave(
        file.path("tca_corpus", "figures", "publications_over_time.png"),
        width = 12,
        height = 6,
        figure
    )

    rm(figure)
}

Maps

Show the code
#|

fn <- file.path(".", "tca_corpus", "data", "countries_tca_corpus.rds")
if (!file.exists(fn)) {
    corpus <- corpus_read(params$corpus_authors_dir)

    data_first <- corpus |>
        dplyr::filter(
            author_position == "first"
        ) |>
        dplyr::select(
            work_id,
            institution_country_code,
        ) |>
        dplyr::group_by(
            work_id,
            institution_country_code
        ) |>
        dplyr::summarise(
            count_first = 1 / n(),
            .groups = "drop"
        ) |>
        dplyr::group_by(
            institution_country_code
        ) |>
        dplyr::summarise(
            count = sum(count_first),
            .groups = "drop"
        ) |>
        dplyr::mutate(
            position = "first"
        )

    data_all <- corpus |>
        dplyr::select(
            work_id,
        ) |>
        dplyr::group_by(
            work_id,
        ) |>
        dplyr::summarize(
            count = n()
        ) |>
        dplyr::right_join(
            y = corpus |>
                dplyr::select(
                    work_id,
                    institution_country_code
                ),
            by = "work_id"
        ) |>
        dplyr::group_by(
            institution_country_code
        ) |>
        dplyr::summarise(
            count = sum(count),
            .groups = "drop"
        ) |>
        dplyr::mutate(
            position = "all"
        )

    data_oa <- openalexR::oa_fetch(
        group_by = "authorships.countries",
        output = "tibble",
        verbose = FALSE
    ) |>
        dplyr::mutate(
            iso3c = countrycode::countrycode(
                key_display_name,
                origin = "country.name",
                destination = "iso3c"
            ),
            key_display_name = NULL,
            key = NULL,
            position = "oa"
        )

    data <- dplyr::add_row(
        collect(data_first),
        collect(data_all)
    ) |>
        dplyr::mutate(
            iso3c = countrycode::countrycode(
                institution_country_code,
                origin = "iso2c",
                destination = "iso3c"
            ),
            institution_country_code = NULL
        ) |>
        dplyr::add_row(
            data_oa
        ) |>
        saveRDS(file = fn)
    rm(data_first, data_all, data_oa)
}

Some checks of the data

Show the code
#|

if (length(list.files(path = file.path("tca_corpus", "maps"), pattern = "publications_countries")) < 2) {
    data <- readRDS(file.path(".", "tca_corpus", "data", "countries_tca_corpus.rds")) |>
        dplyr::group_by(iso3c) |>
        dplyr::summarize(
            count_first = sum(count[position == "first"], na.rm = TRUE),
            count_all = sum(count[position == "all"], na.rm = TRUE),
            count_oa = sum(count[position == "oa"], na.rm = TRUE)
        ) |>
        dplyr::mutate(
            count_oa = ifelse(is.na(count_oa), 0, count_oa),
            log_count_oa = log(count_oa + 1),
            p_oa = count_oa / sum(count_oa),
            #
            count_first = ifelse(is.na(count_first), 0, count_first),
            log_count_first = log(count_first + 1),
            p_first = count_first / sum(count_first),
            p_first_output = count_first / count_oa,
            p_first_diff = (p_oa - p_first) * 100,
            #
            count_all = ifelse(is.na(count_all), 0, count_all),
            log_count_all = log(count_all + 1),
            p_all = count_all / sum(count_all),
            p_all_output = count_all / count_oa,
            p_all_diff = (p_oa - p_all) * 100,
        )

    # data |> mutate(
    #     count_first = count_first / max(count_first),
    #     count_all = count_all / max(count_all),
    #     count_oa = count_oa / max(count_oa)
    # ) |>
    # dplyr::arrange(desc(count_oa)) |>
    # ggplot(aes(x = iso3c)) +
    #     geom_line(aes(y = count_first, color = "Count First"), group = 1) +
    #     geom_line(aes(y = count_all, color = "Count All"), group = 1) +
    #     geom_line(aes(y = count_oa, color = "Count OA"), group = 1) +
    #     scale_color_manual(values = c("Count First" = "red", "Count All" = "blue", "Count OA" = "green")) +
    #     labs(x = "ISO3C", y = "Normalized Count") +
    #     theme_minimal()

    map <- patchwork::wrap_plots(
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of overall publications (count_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of TCA publications (count_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of TCA publications (count_all)"),
        ####
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of overall publications (log_count_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of TCA publications (log_count_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of TCA publications (log_count_all)"),
        ####
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("Overall research output (p_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("TCA research output (p_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("TCA research output (p_all)"),
        ####
        ggplot() +
            theme_void(),
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_first_diff",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", mid = "white", high = "#56B4E9", midpoint = 0) +
            ggplot2::ggtitle("difference (TCA - overall) output (p_oa - p_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_all_diff",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", mid = "white", high = "#56B4E9", midpoint = 0) +
            ggplot2::ggtitle("difference (TCA - overall) output (p_oa - p_all)"),
        ncol = 3
    )

    ggplot2::ggsave(
        file.path("tca_corpus", "maps", "publications_countries.pdf"),
        width = 12,
        height = 8,
        map
    )
    ggplot2::ggsave(
        file.path("tca_corpus", "maps", "publications_countries.png"),
        width = 12,
        height = 8,
        map
    )
}
Show the code
if (length(list.files(path = file.path("tca_corpus", "maps"), pattern = "publications_countries_before_2016")) < 2) {
    data <- readRDS(file.path(".", "tca_corpus", "data", "countries_tca_corpus.rds")) |>
        dplyr::filter(
            publication_year < 2016
        ) |>
        dplyr::group_by(iso3c) |>
        dplyr::summarize(
            count_first = sum(as.integer(count_first), na.rm = TRUE),
            count_all = sum(as.integer(count_all), na.rm = TRUE),
            count_oa = sum(as.integer(count_oa), na.rm = TRUE),
        ) |>
        dplyr::mutate(
            count_oa = ifelse(is.na(count_oa), 0, count_oa),
            log_count_oa = log(count_oa + 1),
            p_oa = count_oa / sum(count_oa),
            #
            count_first = ifelse(is.na(count_first), 0, count_first),
            log_count_first = log(count_first + 1),
            p_first = count_first / sum(count_first),
            p_first_output = count_first / count_oa,
            p_first_diff = (p_oa - p_first) * 100,
            #
            count_all = ifelse(is.na(count_all), 0, count_all),
            log_count_all = log(count_all + 1),
            p_all = count_all / sum(count_all),
            p_all_output = count_all / count_oa,
            p_all_diff = (p_oa - p_all) * 100,
        )

    map <- patchwork::wrap_plots(
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of overall publications (count_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of TCA publications (count_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of TCA publications (count_all)"),
        ####
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of overall publications (log_count_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of TCA publications (log_count_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of TCA publications (log_count_all)"),
        ####
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("Overall research output (p_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("TCA research output (p_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("TCA research output (p_all)"),
        ####
        ggplot() +
            theme_void(),
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_first_diff",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", mid = "white", high = "#56B4E9", midpoint = 0) +
            ggplot2::ggtitle("difference (TCA - overall) output (p_oa - p_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_all_diff",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", mid = "white", high = "#56B4E9", midpoint = 0) +
            ggplot2::ggtitle("difference (TCA - overall) output (p_oa - p_all)"),
        ncol = 3
    )

    ggplot2::ggsave(
        file.path("tca_corpus", "maps", "publications_countries_before_2016.pdf"),
        width = 12,
        height = 8,
        map
    )
    ggplot2::ggsave(
        file.path("tca_corpus", "maps", "publications_countries_before_2016.png"),
        width = 12,
        height = 8,
        map
    )
}
Show the code
if (length(list.files(path = file.path("tca_corpus", "maps"), pattern = "publications_countries_after_2019")) < 2) {
    data <- readRDS(file.path(".", "tca_corpus", "data", "countries_tca_corpus.rds")) |>
        dplyr::filter(
            publication_year > 2019
        ) |>
        dplyr::group_by(iso3c) |>
        dplyr::summarize(
            count_first = sum(as.integer(count_first), na.rm = TRUE),
            count_all = sum(as.integer(count_all), na.rm = TRUE),
            count_oa = sum(as.integer(count_oa), na.rm = TRUE),
        ) |>
        dplyr::mutate(
            count_oa = ifelse(is.na(count_oa), 0, count_oa),
            log_count_oa = log(count_oa + 1),
            p_oa = count_oa / sum(count_oa),
            #
            count_first = ifelse(is.na(count_first), 0, count_first),
            log_count_first = log(count_first + 1),
            p_first = count_first / sum(count_first),
            p_first_output = count_first / count_oa,
            p_first_diff = (p_oa - p_first) * 100,
            #
            count_all = ifelse(is.na(count_all), 0, count_all),
            log_count_all = log(count_all + 1),
            p_all = count_all / sum(count_all),
            p_all_output = count_all / count_oa,
            p_all_diff = (p_oa - p_all) * 100,
        )

    map <- patchwork::wrap_plots(
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of overall publications (count_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of TCA publications (count_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "count_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("count of TCA publications (count_all)"),
        ####
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of overall publications (log_count_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of TCA publications (log_count_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "log_count_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("log(count + 1) of TCA publications (log_count_all)"),
        ####
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_oa",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("Overall research output (p_oa)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_first",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("TCA research output (p_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_all",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", high = "#56B4E9") +
            ggplot2::ggtitle("TCA research output (p_all)"),
        ####
        ggplot() +
            theme_void(),
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_first_diff",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", mid = "white", high = "#56B4E9", midpoint = 0) +
            ggplot2::ggtitle("difference (TCA - overall) output (p_oa - p_first)"),
        #
        data |>
            IPBES.R::map_country_codes(
                map_type = "countries",
                values = "p_all_diff",
                geodata_path = params$gdm_dir
            ) +
            ggplot2::scale_fill_gradient2(low = "#E69F00", mid = "white", high = "#56B4E9", midpoint = 0) +
            ggplot2::ggtitle("difference (TCA - overall) output (p_oa - p_all)"),
        ncol = 3
    )

    ggplot2::ggsave(
        file.path("tca_corpus", "maps", "publications_countries_after_2019.pdf"),
        width = 12,
        height = 8,
        map
    )
    ggplot2::ggsave(
        file.path("tca_corpus", "maps", "publications_countries_after_2019.png"),
        width = 12,
        height = 8,
        map
    )
}

Topics and Sectors

Show the code
#|

fn <- file.path("tca_corpus", "data", "sectors_over_time.rds")
if (!file.exists(fn)) {
    data <- IPBES.R::corpus_read(params$corpus_topics_dir) |>
        dplyr::filter(
            name == "subfield"
        ) |>
        dplyr::group_by(
            publication_year,
            sector,
            i
        ) |>
        dplyr::summarize(
            count = n(),
            .groups = "drop"
        ) |>
        dplyr::rename(
            level = i
        ) |>
        dplyr::collect()

    data |>
        dplyr::filter(
            level == 1
        ) |>
        dplyr::group_by(
            publication_year,
            sector
        ) |>
        dplyr::summarize(
            count_1 = sum(count),
            .groups = "drop"
        ) |>
        dplyr::full_join(
            data |>
                dplyr::group_by(
                    publication_year,
                    sector
                ) |>
                dplyr::summarize(
                    count_all = sum(count)
                )
        ) |>
        dplyr::arrange(
            publication_year,
            sector
        ) |>
        dplyr::mutate(
            count_1 = ifelse(is.na(count_1), 0, count_1),
            count_all = ifelse(is.na(count_all), 0, count_all)
        ) |>
        dplyr::group_by(sector) |>
        dplyr::mutate(
            cumsum_count_1 = cumsum(count_1),
            cumsum_count_all = cumsum(count_all),
            p_cumsum_count_1 = cumsum_count_1 / max(cumsum_count_1),
            p_cumsum_count_all = cumsum_count_all / max(cumsum_count_all)
        ) |>
        saveRDS(fn)
    rm(data)
}
Show the code
#|

if (length(list.files(file.path("tca_corpus", "figures"), pattern = "sectors_over_time")) < 2) {
    figure_1 <- readRDS(file.path(file.path("tca_corpus", "data", "sectors_over_time.rds"))) |>
        dplyr::filter(
            publication_year >= 1950
        ) |>
        ggplot() +
        geom_line(
            aes(
                x = publication_year,
                y = cumsum_count_1,
                color = sector,
                lty = sector
            )
        ) +
        scale_x_continuous(breaks = seq(1900, 2020, 10)) +
        scale_y_continuous(
            "Log(No Publications)",
            trans = "log10"
            # sec.axis = sec_axis(~ . * 10, name = "Cumulative proportion") # divide by 100 to scale back the secondary axis
        ) +
        labs(
            title = "Publications classified into Sectors over time (primary sector only)",
            x = "Year"
            # y = "Number of publications"
        ) +
        theme_minimal() +
        theme(
            legend.position = "bottom",
            # axis.text.y.right = element_text(color = "red")
        )

    figure_all <- readRDS(file.path(file.path("tca_corpus", "data", "sectors_over_time.rds"))) |>
        dplyr::filter(
            publication_year >= 1950
        ) |>
        ggplot() +
        geom_line(
            aes(
                x = publication_year,
                y = cumsum_count_all,
                color = sector,
                lty = sector
            )
        ) +
        scale_x_continuous(breaks = seq(1900, 2020, 10)) +
        scale_y_continuous(
            "Log(No Publications)",
            trans = "log10"
            # sec.axis = sec_axis(~ . * 10, name = "Cumulative proportion") # divide by 100 to scale back the secondary axis
        ) +
        labs(
            title = "Publications classified into Sectors over time (up to three sectors)",
            x = "Year"
            # y = "Number of publications"
        ) +
        theme_minimal() +
        theme(
            legend.position = "none",
            # axis.text.y.right = element_text(color = "red")
        )

    figure <- patchwork::wrap_plots(
        figure_1,
        figure_all,
        nrow = 2
    )

    ggplot2::ggsave(
        file.path("tca_corpus", "figures", "sectors_over_time.pdf"),
        width = 12,
        height = 12,
        figure
    )
    ggplot2::ggsave(
        file.path("tca_corpus", "figures", "sectors_over_time.png"),
        width = 12,
        height = 12,
        figure
    )

    rm(figure_1, figure_all, figure)
}
Show the code
#|

if (length(list.files(file.path("tca_corpus", "figures"), pattern = "sectors_proportions_over_time")) < 2) {
    figure <- readRDS(file.path(file.path("tca_corpus", "data", "sectors_over_time.rds"))) |>
        dplyr::filter(
            publication_year >= 1950
        ) |>
        group_by(publication_year) |>
        mutate(count_all = count_all / sum(count_all)) |>
        ggplot() +
        geom_col(
            aes(
                x = publication_year,
                y = count_all,
                fill = sector
            ),
            position = "stack"
        ) +
        scale_x_continuous(breaks = seq(1900, 2020, 10)) +
        scale_y_continuous(
            "Proportion of Publications" # ,
            #    limits = c(0, 1.0001)
        ) +
        labs(
            title = "Publications classified into Sectors over time. Each publication has up to three sectors assigned.",
            x = "Year",
            y = "Proportion"
        ) +
        theme_minimal() +
        theme(
            legend.position = "right"
        )

    ggplot2::ggsave(
        file.path("tca_corpus", "figures", "sectors_proportions_over_time.pdf"),
        width = 12,
        height = 12,
        figure
    )
    ggplot2::ggsave(
        file.path("tca_corpus", "figures", "sectors_proportions_over_time.png"),
        width = 12,
        height = 12,
        figure
    )

    rm(figure)
}

Results

Assessment of Search Terms Using OpenAlex

Number of Hits per Individual Corpus

Here we show the number of hits for the key papers in the individual corpi. The columns represent the different search terms as defined in Section 4.3.

Show the code
dat <- cbind(
    search_term_hits
)

rownames(dat) <- dplyr::recode(
    rownames(dat),
    "transformative change" = "Transformative Change @sec-transform",
    "nature environment" = "Nature @sec-nature",
    "tca corpus" = "Assessment Corpus @sec-tca-corpus",
    "Chapter 1 01" = "Ch1 01 @sec-ch1-01",
    "Chapter 1 02" = "Ch1 02 @sec-ch1-02",
    "Chapter 1 03" = "Ch1 03 @sec-ch1-03",
    "Chapter 1 04" = "Ch1 04 @sec-ch1-04",
    "Chapter 1 05" = "Ch1 05 @sec-ch1-05",
    "Chapter 1 06" = "Ch1 06 @sec-ch1-06",
    "Chapter 2" = "Ch2  @sec-ch2",
    "Chapter 3 01" = "Ch3 01 @sec-ch3-01",
    "Chapter 3 02" = "Ch3 02 @sec-ch3-02",
    "Chapter 3 03" = "Ch3 03 @sec-ch3-03",
    "Chapter 3 04" = "Ch3 04 @sec-ch3-04",
    "Chapter 3 05" = "Ch3 05 @sec-ch3-05",
    "Chapter 3 06" = "Ch3 06 @sec-ch3-06",
    "Chapter 4 01" = "Ch4 01 @sec-ch4-01",
    "Chapter 4 02" = "Ch4 02 @sec-ch4-02",
    "Chapter 5 vision" = "Ch5 Vision @sec-ch5_vision",
    "Chapter 5 vision case" = "Ch5 Vision Case @sec-ch5_vision_case",
    "case" = "Ch5 Case @sec-case"
)

dat[c(1, 2, 3, 4, 20), ] |>
    knitr::kable(
        caption = "Number of hits",
    )
Number of hits
count db_response_time_ms
oa 253,514,060 20
Transformative Change Section 4.3.1 18,844,396 4253
Nature Section 4.3.2 26,116,505 2682
Assessment Corpus Section 4.3.3 4,720,072 4346
Ch5 Case Section 4.3.4 56,210,784 5040
Show the code
rm(dat)

Key papers in the different Individual Corpi

Show the code
#|

tbl <- lapply(
    names(key_works_hits),
    function(n) {
        kwh <- key_works_hits[[n]]
        if (nrow(kwh) > 0) {
            total <- grepl("Total", rownames(kwh))
            rownames(kwh)[!total] <- paste0(n, " - <a href='https://doi.org/", rownames(kwh)[!total], "' target='_blank'>Click here</a>")
            rownames(kwh)[total] <- paste0("**", n, " - Total**")
            kwh |>
                arrange(Total) |>
                apply(
                    c(1, 2),
                    function(x) {
                        ifelse(x == 0, "<font color='red'>0</font>", paste0("<font color='green'>", x, "</font>"))
                    }
                ) |>
                as.data.frame()
        } else {
            return(NULL)
        }
    }
)
tbl <- tbl[sapply(tbl, class) != "NULL"]
tbl <- do.call(what = rbind, tbl)


detail <- rbind(
    "**overall**" = c(
        paste0(
            "**",
            search_term_hits |>
                select(count) |>
                unlist() |>
                as.vector(),
            "**"
        ),
        ""
    ),
    tbl
)

detail <- detail |>
    dplyr::rename(
        "Transformative Change @sec-transform" = s_1_transformative_change,
        "Nature @sec-nature" = s_1_nature_environment,
        "Assessment Corpus @sec-tca-corpus" = s_1_tca_corpus,
        "Ch1 01 @sec-ch1-01" = s_1_ch1_01,
        "Ch1 02 @sec-ch1-02" = s_1_ch1_02,
        "Ch1 03 @sec-ch1-03" = s_1_ch1_03,
        "Ch1 04 @sec-ch1-04" = s_1_ch1_04,
        "Ch1 05 @sec-ch1-05" = s_1_ch1_05,
        "Ch1 06 @sec-ch1-06" = s_1_ch1_06,
        "Ch2  @sec-ch2" = s_1_ch2,
        "Ch3 01 @sec-ch3-01" = s_1_ch3_01,
        "Ch3 02 @sec-ch3-02" = s_1_ch3_02,
        "Ch3 03 @sec-ch3-03" = s_1_ch3_03,
        "Ch3 04 @sec-ch3-04" = s_1_ch3_04,
        "Ch3 05 @sec-ch3-05" = s_1_ch3_05,
        "Ch3 06 @sec-ch3-06" = s_1_ch3_06,
        "Ch4 01 @sec-ch4-01" = s_1_ch4_01,
        "Ch4 02 @sec-ch4-02" = s_1_ch4_02,
        # "Ch5 Vision @sec-ch5_vision" = s_1_ch5_vision,
        "Ch5 Case @sec-case" = s_1_case,
        # "Ch5 Vision Case @sec-ch5_vision_case" = s_1_ch5_vision_case
    )

Key Papers in Individual Corpi

Summary

Each column is a different search term, and each row consists of the key papers of a specific chapter and the author who provided the key papers. The number is the number of key papers occurring in the Individual Corpus.

Show the code
in_summary <- grepl("Total|overall", rownames(detail))
knitr::kable(
    detail[in_summary, c(1, 2, 3, 4, 20)],
)
s_1_oa Transformative Change Section 4.3.1 Nature Section 4.3.2 Assessment Corpus Section 4.3.3 Ch5 Case Section 4.3.4
overall 253,514,060 18,844,396 26,116,505 4,720,072 56,210,784
Ch_1 - Total 42 40 41 39 4
Ch_2 - Total 22 20 22 20 3
Ch_3_Cl_3 - Total 4 4 4 4 3
Ch_3_Cl_4 - Total 5 5 5 5 1
Ch_3_Cl_5 - Total 3 2 3 2 0
Ch_3_Cl_6 - Total 6 6 5 5 1
Ch_3 - Total 4 4 4 4 1
Ch_4_Cl_1 - Total 7 4 7 4 3
Ch_4_Cl_2 - Total 4 3 3 3 0
Ch_4_Cl_3 - Total 5 5 5 5 3
Ch_4_Cl_4 - Total 4 2 4 2 0
Ch_4_Cl_5 - Total 5 3 4 3 0
Ch_5 - Total 35 33 33 31 7
all - Total 134 120 128 116 26

Detail

Show the code
knitr::kable(
    detail[, c(1, 2, 3, 4, 20)]
)
s_1_oa Transformative Change Section 4.3.1 Nature Section 4.3.2 Assessment Corpus Section 4.3.3 Ch5 Case Section 4.3.4
overall 253,514,060 18,844,396 26,116,505 4,720,072 56,210,784
Ch_1 - Click here 1 0 1 0 0
Ch_1 - Click here 1 0 1 0 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 0 0 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 1
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 0
Ch_1 - Click here 1 1 1 1 1
Ch_1 - Click here 1 1 1 1 1
Ch_1 - Click here 1 1 1 1 1
Ch_1 - Total 42 40 41 39 4
Ch_2 - Click here 1 0 1 0 0
Ch_2 - Click here 1 0 1 0 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 1
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 0
Ch_2 - Click here 1 1 1 1 1
Ch_2 - Click here 1 1 1 1 1
Ch_2 - Total 22 20 22 20 3
Ch_3_Cl_3 - Click here 1 1 1 1 0
Ch_3_Cl_3 - Click here 1 1 1 1 1
Ch_3_Cl_3 - Click here 1 1 1 1 1
Ch_3_Cl_3 - Click here 1 1 1 1 1
Ch_3_Cl_3 - Total 4 4 4 4 3
Ch_3_Cl_4 - Click here 1 1 1 1 1
Ch_3_Cl_4 - Click here 1 1 1 1 0
Ch_3_Cl_4 - Click here 1 1 1 1 0
Ch_3_Cl_4 - Click here 1 1 1 1 0
Ch_3_Cl_4 - Click here 1 1 1 1 0
Ch_3_Cl_4 - Total 5 5 5 5 1
Ch_3_Cl_5 - Click here 1 0 1 0 0
Ch_3_Cl_5 - Click here 1 1 1 1 0
Ch_3_Cl_5 - Click here 1 1 1 1 0
Ch_3_Cl_5 - Total 3 2 3 2 0
Ch_3_Cl_6 - Click here 1 1 1 1 0
Ch_3_Cl_6 - Click here 1 1 0 0 0
Ch_3_Cl_6 - Click here 1 1 1 1 0
Ch_3_Cl_6 - Click here 1 1 1 1 0
Ch_3_Cl_6 - Click here 1 1 1 1 1
Ch_3_Cl_6 - Click here 1 1 1 1 0
Ch_3_Cl_6 - Total 6 6 5 5 1
Ch_3 - Click here 1 1 1 1 0
Ch_3 - Click here 1 1 1 1 0
Ch_3 - Click here 1 1 1 1 0
Ch_3 - Click here 1 1 1 1 1
Ch_3 - Total 4 4 4 4 1
Ch_4_Cl_1 - Click here 1 0 1 0 0
Ch_4_Cl_1 - Click here 1 0 1 0 0
Ch_4_Cl_1 - Click here 1 0 1 0 0
Ch_4_Cl_1 - Click here 1 1 1 1 0
Ch_4_Cl_1 - Click here 1 1 1 1 1
Ch_4_Cl_1 - Click here 1 1 1 1 1
Ch_4_Cl_1 - Click here 1 1 1 1 1
Ch_4_Cl_1 - Total 7 4 7 4 3
Ch_4_Cl_2 - Click here 1 0 0 0 0
Ch_4_Cl_2 - Click here 1 1 1 1 0
Ch_4_Cl_2 - Click here 1 1 1 1 0
Ch_4_Cl_2 - Click here 1 1 1 1 0
Ch_4_Cl_2 - Total 4 3 3 3 0
Ch_4_Cl_3 - Click here 1 1 1 1 0
Ch_4_Cl_3 - Click here 1 1 1 1 1
Ch_4_Cl_3 - Click here 1 1 1 1 1
Ch_4_Cl_3 - Click here 1 1 1 1 1
Ch_4_Cl_3 - Click here 1 1 1 1 0
Ch_4_Cl_3 - Total 5 5 5 5 3
Ch_4_Cl_4 - Click here 1 0 1 0 0
Ch_4_Cl_4 - Click here 1 0 1 0 0
Ch_4_Cl_4 - Click here 1 1 1 1 0
Ch_4_Cl_4 - Click here 1 1 1 1 0
Ch_4_Cl_4 - Total 4 2 4 2 0
Ch_4_Cl_5 - Click here 1 0 0 0 0
Ch_4_Cl_5 - Click here 1 0 1 0 0
Ch_4_Cl_5 - Click here 1 1 1 1 0
Ch_4_Cl_5 - Click here 1 1 1 1 0
Ch_4_Cl_5 - Click here 1 1 1 1 0
Ch_4_Cl_5 - Total 5 3 4 3 0
Ch_5 - Click here 1 0 1 0 0
Ch_5 - Click here 1 1 0 0 0
Ch_5 - Click here 1 0 1 0 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 0 0 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 1
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 1
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 1
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 0
Ch_5 - Click here 1 1 1 1 1
Ch_5 - Click here 1 1 1 1 1
Ch_5 - Click here 1 1 1 1 1
Ch_5 - Click here 1 1 1 1 1
Ch_5 - Total 35 33 33 31 7
all - Click here 1 0 0 0 0
all - Click here 1 0 1 0 0
all - Click here 1 0 1 0 0
all - Click here 1 0 1 0 0
all - Click here 1 0 1 0 0
all - Click here 1 1 0 0 0
all - Click here 1 1 1 1 0
all - Click here 1 1 0 0 0
all - Click here 1 0 1 0 0
all - Click here 1 0 1 0 0
all - Click here 1 0 1 0 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 0 1 0 0
all - Click here 1 1 1 1 0
all - Click here 1 1 0 0 0
all - Click here 1 0 1 0 0
all - Click here 1 0 0 0 0
all - Click here 1 0 1 0 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 0 1 0 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 0 1 0 0
all - Click here 1 1 1 1 0
all - Click here 1 1 0 0 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 0
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Click here 1 1 1 1 1
all - Total 134 120 128 116 26

TCA Corpus properties

Publications over time

The red line is the cumulative proportion of publications, the blue line the cumulative proportion of all of the OpenAlex corpus. Both lines use the secondary (red) axis.

To download in high resolution, click here

Show the code
readRDS(file.path(".", "tca_corpus", "data", "publications_over_time_tca_corpus.rds")) |>
    IPBES.R::table_dt(fn = "publications_over_time")

Sectors over time

The graph shows the proportion of the different sectors over time

To download in high resolution, click here

Show the code
readRDS(file.path(".", "tca_corpus", "data", "sectors_over_time.rds")) |>
    IPBES.R::table_dt(
        fn = "sectors_over_time",
        fixedColumns = list(leftColumns = 3)
    )

Additional Searches Subsets

Show the code
file.path(".", "tca_corpus", "data", "additional_search.rds") |>
    readRDS() |>
    knitr::kable()
Category Count Proportion Timestamp
Art 768828 0.1624404 2024-05-16 13:44:22
Media 310462 0.0655954 2024-05-16 13:44:28
Imaginative 1358530 0.2870345 2024-05-16 13:44:32
Rights of Nature 621 0.0001312 2024-05-16 13:44:35
Initiative 1565998 0.3308690 2024-05-16 13:44:40
Creativity 940888 0.1987938 2024-05-16 13:44:43

Differences between the used media search term and the original media search term:

Show the code
diffviewer::visual_diff(
    "tca_corpus/input/search terms/media.org.txt",
    "tca_corpus/input/search terms/media.txt"
)

Strategies/Options/Instruments for Transformative Change

The file strategies_options.md contains the terms for the different strategies and options.

I will now iterate through all of them and identify the number of hits per individual search term. This can be used as a result in itself in interpreting the importance of each term as well as to shorten the search term to be able to use it together with the TCA search term.

Methods

Prepare Search Terms

Show the code
fn <- file.path("tca_corpus", "data", "strategies_options_terms.rds")
if (!file.exists(fn)) {
    sts <- data.frame(
        "Strategy" = NA,
        "Option" = NA,
        term = params$sts_strategies_options
    )
    sts <- sts[sts$term != "", ]
    for (i in 1:nrow(sts)) {
        if (grepl("^# ", sts$term[i])) {
            strategy <- gsub("^# ", "", sts$term[i])
        } else if (grepl("^## ", sts$term[i])) {
            option <- gsub("^## ", "", sts$term[i])
        } else {
            sts$Strategy[i] <- strategy
            sts$Option[i] <- option
        }
    }
    sts <- sts[!is.na(sts$Strategy), ]
    sts <- sts[!is.na(sts$Option), ]

    sts$Name <- paste0(sts$Strategy, " ||| ", sts$Option)

    strategies_options_terms <- split(sts$term, sts$Name)

    saveRDS(strategies_options_terms, file = fn)
}

Run the Search Terms

Show the code
#|

fn <- file.path("tca_corpus", "data", "strategies_options.rds")
if (!file.exists(file.path(fn))) {
    strategies_options_terms <- readRDS(file.path("tca_corpus", "data", "strategies_options_terms.rds"))
    strategies_options <- lapply(
        names(strategies_options_terms),
        function(strategy) {
            message("- ", strategy)
            result <- list()
            result$term <- paste(strategies_options_terms[[strategy]], collapse = " ")
            result$count <- NA
            result$years <- data.frame(publication_year = NA, count = NA)
            result$assess_search_terms <- assess_search_term(
                st = strategies_options_terms[[strategy]],
                AND_term = params$s_1_tca_corpus,
                remove = " OR$",
                excl_others = FALSE,
                verbose = FALSE,
                mc.cores = 1
            ) |>
                dplyr::arrange(desc(count))
            #
            try(
                {
                    result$count <- openalexR::oa_fetch(
                        title_and_abstract.search = IPBES.R::compact(paste0("(", params$s_1_tca_corpus, ") AND (", result$term, ")")),
                        count_only = TRUE,
                        output = "list",
                        verbose = FALSE
                    )$count
                    message("  - ", result$count, " hits")
                    #
                    result$years <- openalexR::oa_fetch(
                        title_and_abstract.search = IPBES.R::compact(paste0("(", params$s_1_tca_corpus, ") AND (", result$term, ")")),
                        group_by = "publication_year",
                        output = "dataframe",
                        verbose = FALSE
                    ) |>
                        dplyr::select(
                            publication_year = key_display_name,
                            count
                        ) |>
                        dplyr::arrange(
                            publication_year
                        )
                },
                silent = FALSE
            )
            return(result)
        }
    )

    # Assign the names to the first and second level list
    names(strategies_options) <- names(strategies_options_terms)

    saveRDS(strategies_options, file = fn)
}

Download Strategies Corpus (only ids)

Show the code
#|

tic()

strategies_options_terms <- readRDS(file.path("tca_corpus", "data", "strategies_options_terms.rds"))
lapply(
    names(strategies_options_terms),
    function(strategy) {
        message("- ", strategy)
        IPBES.R::corpus_download(
            pages_dir = paste0(params$pages_strategies_dir, "_", make.names(strategy)),
            title_and_abstract_search = IPBES.R::compact(paste0("(", params$s_1_tca_corpus, ") AND (", paste0(strategies_options_terms[[strategy]], collapse = " "), ")")),
            select_fields = c("id"),
            continue = TRUE,
            delete_pages_dir = FALSE,
            dry_run = FALSE,
            verbose = TRUE,
            mc_cores = 8
        )
    }
)

toc()

Convert Strategies Pages to rds (only ids)

Show the code
tic()

fn <- file.path("tca_corpus", "data", "strategies_options_ids.rds")

if (!file.exists(fn)) {
    strategies__options_terms <- readRDS(file.path("tca_corpus", "data", "strategies_options_terms.rds"))
    strategies_options_ids <- lapply(
        names(strategies__options_terms),
        function(strategy) {
            message("- ", strategy)
            paste0(params$pages_strategies_dir, "_", make.names(strategy)) |>
                list.files(
                    pattern = ".rds$",
                    recursive = TRUE,
                    full.names = TRUE
                ) |>
                sapply(
                    FUN = function(f) {
                        readRDS(f)
                    }
                ) |>
                unlist() |>
                as.vector() |>
                unique()
        }
    )
    names(strategies_options_ids) <- names(strategies__options_terms)

    saveRDS(strategies_options_ids, file = fn)
}

toc()

Convert Strategies Pages in Cases to rds (only ids)

Show the code
#|

fn <- file.path("tca_corpus", "data", "strategies_options_ids_cases.rds")

if (!file.exists(fn)) {
    case_ids <- corpus_read(params$corpus_cases_dir) |>
        dplyr::distinct(id) |>
        collect() |>
        unlist()
    strategies_options_ids <- readRDS(file.path("tca_corpus", "data", "strategies_options_ids.rds"))

    strategies_options_ids_cases <- lapply(
        strategies_options_ids,
        function(strategy) {
            intersect(strategy, case_ids)
        }
    )

    saveRDS(strategies_options_ids_cases, file = fn)
}

Extract per year from Strategies Pages

Show the code
#|

tic()

fn <- file.path("tca_corpus", "data", "strategies_options_corpus.rds")

if (!file.exists(fn)) {
    strategies_options_terms <- readRDS(file.path("tca_corpus", "data", "strategies_options_terms.rds"))
    strategies_options_ids <- readRDS(file.path("tca_corpus", "data", "strategies_options_ids.rds"))

    strategies_options_corpus <- lapply(
        names(strategies_options_terms),
        function(strategy) {
            message("- ", strategy)
            years <- paste0(params$pages_strategies_dir, "_", make.names(strategy)) |>
                list.files(
                    pattern = "^set_publication_year=",
                    recursive = FALSE,
                    full.names = FALSE
                ) |>
                gsub(
                    pattern = "set_publication_year=",
                    replacement = ""
                ) |>
                as.integer()
            #
            result <- list()
            result$term <- paste(strategies_options_terms[[strategy]], collapse = " ")
            result$count <- length(strategies_options_ids[[strategy]])

            result$years <- data.frame(
                publication_year = years,
                count = sapply(
                    years,
                    function(year) {
                        paste0(params$pages_strategies_dir, "_", make.names(strategy)) |>
                            list.files(
                                pattern = ".rds$",
                                recursive = TRUE,
                                full.names = TRUE
                            ) |>
                            grep(
                                pattern = paste0("set_publication_year=", year),
                                value = TRUE
                            ) |>
                            sapply(
                                FUN = function(f) {
                                    readRDS(f)
                                }
                            ) |>
                            unlist() |>
                            as.vector() |>
                            unique() |>
                            length()
                    }
                )
            )
            return(result)
        }
    )

    names(strategies_options_corpus) <- names(strategies_options_terms)

    saveRDS(strategies_options_corpus, file = fn)
}

toc()
0.001 sec elapsed

Create Strategies Matrix

Show the code
#|

fn <- file.path("tca_corpus", "data", "strategies_options_overlap.rds")

if (!file.exists(fn)) {
    strategies_options_ids <- readRDS(file.path("tca_corpus", "data", "strategies_options_ids.rds"))

    overlap_count <- function(x, y) {
        length(intersect(x, y))
    }

    strategies_options_overlap <- outer(
        strategies_options_ids,
        strategies_options_ids,
        Vectorize(overlap_count)
    )

    saveRDS(strategies_options_overlap, file = fn)
    write.csv(strategies_options_overlap, file = gsub("rds$", "csv", fn))
}

Create Strategies Matrix Cases Only

Show the code
#|

fn <- file.path("tca_corpus", "data", "strategies_options_overlap_cases.rds")

if (!file.exists(fn)) {
    strategies_options_overlap_cases <- file.path("tca_corpus", "data", "strategies_options_ids_cases.rds") |>
        readRDS()

    strategies_options_overlap_cases <- sapply(
        names(strategies_options_overlap_cases),
        FUN = function(s1) {
            sapply(
                names(strategies_options_overlap_cases),
                function(s2) {
                    length(intersect(strategies_options_overlap_cases[[s1]], strategies_options_overlap_cases[[s2]]))
                }
            )
        }
    )

    saveRDS(strategies_options_overlap_cases, file = fn)
    write.csv(strategies_options_overlap_cases, file = gsub("rds$", "csv", fn))
}

Extract count Strategies

Show the code
strategies_options_ids <- file.path("tca_corpus", "data", "strategies_options_ids.rds") |>
    readRDS()

strategies_options_ids_cases <- file.path("tca_corpus", "data", "strategies_options_ids_cases.rds") |>
    readRDS()

count <- data.frame(
    strategy = names(strategies_options_ids) |> 
        strsplit(split = " \\|\\|\\| ") |> 
        sapply(FUN = "[[", 1) |>
        unique(),
    count_tca = c(
        strategy_1 = strategies_options_ids[grepl("Strategy 1", names(strategies_options_ids))] |>
            unlist() |>
            unique() |>
            length(),
        strategy_2 = strategies_options_ids[grepl("Strategy 2", names(strategies_options_ids))] |>
            unlist() |>
            unique() |>
            length(),
        strategy_3 = strategies_options_ids[grepl("Strategy 3", names(strategies_options_ids))] |>
            unlist() |>
            unique() |>
            length(),
        strategy_4 = strategies_options_ids[grepl("Strategy 4", names(strategies_options_ids))] |>
            unlist() |>
            unique() |>
            length(),
        strategy_5 = strategies_options_ids[grepl("Strategy 5", names(strategies_options_ids))] |>
            unlist() |>
            unique() |>
            length()
    ),
    count_cases = c(
        strategy_1 = strategies_options_ids_cases[grepl("Strategy 1", names(strategies_options_ids_cases))] |>
            unlist() |>
            unique() |>
            length(),
        strategy_2 = strategies_options_ids_cases[grepl("Strategy 2", names(strategies_options_ids_cases))] |>
            unlist() |>
            unique() |>
            length(),
        strategy_3 = strategies_options_ids_cases[grepl("Strategy 3", names(strategies_options_ids_cases))] |>
            unlist() |>
            unique() |>
            length(),
        strategy_4 = strategies_options_ids_cases[grepl("Strategy 4", names(strategies_options_ids_cases))] |>
            unlist() |>
            unique() |>
            length(),
        strategy_5 = strategies_options_ids_cases[grepl("Strategy 5", names(strategies_options_ids_cases))] |>
            unlist() |>
            unique() |>
            length()
    )
)


count$p_tca <- count$count_tca / corpus_read(params$corpus_dir) |>
    dplyr::distinct(id) |>
    collect() |>
    nrow()

count$p_cases <- count$count_cases / corpus_read(params$corpus_cases_dir) |>
    dplyr::distinct(id) |>
    collect() |>
    nrow()

count |> 
    knitr::kable()
strategy count_tca count_cases p_tca p_cases
strategy_1 Strategy 1: Conserving and regenerating places of value to nature and people 116994 3535 0.0276775 0.0784910
strategy_2 Strategy 2: Driving systemic change in the sectors most responsible for biodiversity loss and nature’s decline 125448 3190 0.0296775 0.0708307
strategy_3 Strategy 3: Transforming economic systems for nature and equity 54609 1708 0.0129189 0.0379244
strategy_4 Strategy 4: Transforming governance systems to be inclusive, accountable, and adaptive 40278 1926 0.0095286 0.0427648
strategy_5 Strategy 5.: Shifting societal views, values, and paradigms to recognize and prioritize the fundamental interconnections between humans and nature that sustain life for all beings 129054 3455 0.0305305 0.0767147

Results

Count of Strategies / Options Table

Show the code
#|

# data from OpernAlex vie count
# strategies_options_corpus <- readRDS(file.path("tca_corpus", "data", "strategies_options.rds"))

# data from corpora
strategies_options <- readRDS(file.path("tca_corpus", "data", "strategies_options_corpus.rds"))

data <- lapply(
    names(strategies_options),
    function(strategy) {
        data.frame(
            Strategy = strsplit(strategy, " \\|\\|\\| ")[[1]][1],
            Concept = strsplit(strategy, " \\|\\|\\| ")[[1]][2],
            Count = strategies_options[[strategy]]$count,
            Count_until_1992 = sum(strategies_options[[strategy]]$years$count[strategies_options[[strategy]]$years$publication_year <= 1992]),
            Count_after_1992 = sum(strategies_options[[strategy]]$years$count[strategies_options[[strategy]]$years$publication_year > 1992])
        )
    }
) |>
    do.call(what = rbind)

data |>
    IPBES.R::table_dt(
        fn = "strategies_options_corpus_counts",
        fixedColumns = list(leftColumns = 0)
    )

Plot of the Count of the Strategies / Options split at 1992

This data is corrected for different research oputput before and after 1992 by dividing by the overall reasarch output in that perio as reflected on OpenAlex.

Show the code
#|

figname <- file.path("tca_corpus", "figures", "strategies_options_time_split")

figs <- list.files(
    path = dirname(figname),
    pattern = basename(figname),
    recursive = TRUE
) |>
    length()

if (figs < 6) {
    # data from OpernAlex vie count
    # strategies_options <- readRDS(file.path("tca_corpus", "data", "strategies_options.rds"))

    # data from corpora
    strategies_options <- readRDS(file.path("tca_corpus", "data", "strategies_options_corpus.rds"))

    oa <- openalexR::oa_fetch(
        search = "",
        group_by = "publication_year",
        output = "dataframe",
        verbose = FALSE
    )
    oa_until_1992 <- sum(oa$count[oa$key <= 1992])
    oa_after_1992 <- sum(oa$count[oa$key > 1992])

    data <- lapply(
        names(strategies_options),
        function(strategy) {
            data.frame(
                Strategy = strsplit(strategy, " \\|\\|\\| ")[[1]][1],
                Concept = strsplit(strategy, " \\|\\|\\| ")[[1]][2],
                Count = strategies_options[[strategy]]$count,
                Count_until_1992 = sum(strategies_options[[strategy]]$years$count[strategies_options[[strategy]]$years$publication_year <= 1992]),
                Count_after_1992 = sum(strategies_options[[strategy]]$years$count[strategies_options[[strategy]]$years$publication_year > 1992])
            )
        }
    ) |>
        do.call(what = rbind)

    ## As in Dendrogram
    # data$Strategy[grep("Strategy 1", data$Strategy)] <- "Strategy 1: Conserve and regenerate places of value to nature and people"
    # data$Strategy[grep("Strategy 2", data$Strategy)] <- "Strategy 2: Drive systemic change in the sectors most responsible for nature's decline"
    # data$Strategy[grep("Strategy 3", data$Strategy)] <- "Strategy 3: Transform economic systems for nature and equity"
    # data$Strategy[grep("Strategy 4", data$Strategy)] <- "Strategy 4: Transform governance systems to be inclusive, accountable and adaptive"
    # data$Strategy[grep("Strategy 5", data$Strategy)] <- "Strategy 5: Shift societal views and values to recognise interconnections between humans and nature"

    data$Strategy[grep("Strategy 1", data$Strategy)] <- "Strategy 1"
    data$Strategy[grep("Strategy 2", data$Strategy)] <- "Strategy 2"
    data$Strategy[grep("Strategy 3", data$Strategy)] <- "Strategy 3"
    data$Strategy[grep("Strategy 4", data$Strategy)] <- "Strategy 4"
    data$Strategy[grep("Strategy 5", data$Strategy)] <- "Strategy 5"

    data$Concept[grep("Action 1.1", data$Concept)] <- "Action 1"
    data$Concept[grep("Action 1.2", data$Concept)] <- "Action 1.2"
    data$Concept[grep("Action 1.3a", data$Concept)] <- "Action 1.3a"
    data$Concept[grep("Action 1.3b", data$Concept)] <- "Action 1.3b"
    data$Concept[grep("Action 1.4", data$Concept)] <- "Action 1.4"
    data$Concept[grep("Action 1.5", data$Concept)] <- "Action 1.5"
    data$Concept[grep("Action 2.1a", data$Concept)] <- "Action 2.1a"
    data$Concept[grep("Action 2.1b", data$Concept)] <- "Action 2b"
    data$Concept[grep("Action 2.2a", data$Concept)] <- "Action 2.2a"
    data$Concept[grep("Action 2.2b", data$Concept)] <- "Action 2.2b"
    data$Concept[grep("Action 2.3", data$Concept)] <- "Action 2.3"
    data$Concept[grep("Action 2.4", data$Concept)] <- "Action 2.4"
    data$Concept[grep("Action 3.1", data$Concept)] <- "Action 3.1"
    data$Concept[grep("Action 3.2a", data$Concept)] <- "Action 3.2a"
    data$Concept[grep("Action 3.2b", data$Concept)] <- "Action 3.2b"
    data$Concept[grep("Action 3.3", data$Concept)] <- "Action 3.3"
    data$Concept[grep("Action 3.4", data$Concept)] <- "Action 3.4"
    data$Concept[grep("Action 4.1", data$Concept)] <- "Action 4.1"
    data$Concept[grep("Action 4.2", data$Concept)] <- "Action 4.2"
    data$Concept[grep("Action 4.3", data$Concept)] <- "Action 4.3"
    data$Concept[grep("Action 4.4", data$Concept)] <- "Action 4.4"
    data$Concept[grep("Action 5.1", data$Concept)] <- "Action 5.1"
    data$Concept[grep("Action 5.2", data$Concept)] <- "Action 5.2"
    data$Concept[grep("Action 5.3", data$Concept)] <- "Action 5.3"
    data$Concept[grep("Action 5.4", data$Concept)] <- "Action 5.4"
    data$Concept[grep("Action 5.5", data$Concept)] <- "Action 5.5"

    data <- data |>
        dplyr::mutate(            
            Strategy = paste0(Strategy, "\n", Concept),
            Count_until_1992 = Count_until_1992 / oa_until_1992,
            Count_after_1992 = Count_after_1992 / oa_after_1992,
        ) |>
        dplyr::group_by(Strategy) |>
        dplyr::mutate(
            Count_until_1992_p = Count_until_1992 / sum(Count_until_1992 + Count_after_1992),
            Count_after_1992_p = Count_after_1992 / sum(Count_until_1992 + Count_after_1992)
        )

    data$Strategy <- data$Strategy |> as.factor()
    levels(data$Strategy) <- rev(levels(data$Strategy))

    figure <- data |>
        tidyr::pivot_longer(
            cols = c(Count_until_1992, Count_after_1992),
            names_to = "Period",
            values_to = "Count_year"
        ) |>
        # Create the plot
        ggplot(aes(x = Strategy, y = Count_year, fill = Period)) +
        geom_bar(stat = "identity") +
        theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
        labs(x = "Strategy", y = "Count", fill = "Period") +
        coord_flip() + 
        theme(legend.position = "bottom")

    ggplot2::ggsave(
        paste0(figname, ".pdf"),
        width = 8,
        height = 9,
        figure
    )
    ggplot2::ggsave(
        paste0(figname, ".png"),
        width = 8,
        height = 9,
        figure
    )
    ggplot2::ggsave(
        paste0(figname, ".jpg"),
        width = 8,
        height = 9,
        quality = 100,
        figure
    )

    figure <- data |>
        tidyr::pivot_longer(
            cols = c(Count_until_1992_p, Count_after_1992_p),
            names_to = "Period",
            values_to = "Count_p_year"
        ) |>
        # Create the plot
        ggplot(aes(x = Strategy, y = Count_p_year, fill = Period)) +
        geom_bar(stat = "identity") +
        theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
        labs(x = "Strategy", y = "Count", fill = "Period") +
        coord_flip() + 
        theme(legend.position = "bottom")

    ggplot2::ggsave(
        paste0(figname, "_p.pdf"),
        width = 8,
        height = 9,
        figure
    )
    ggplot2::ggsave(
        paste0(figname, "_p.png"),
        width = 8,
        height = 9,
        figure
    )
    ggplot2::ggsave(
        paste0(figname, "_p.jpg"),
        width = 8,
        height = 9,
        quality = 100,
        figure
    )
}

The graph shows the by overall research output corrected publications before and after 1992 for each Strategy ||| Option

To download in high resolution, click here

The second graph shows the proportion of the by overall research output corrected publications before and after 1992 for each Strategy ||| Option

To download in high resolution, click here

Assessment of individual terms

These numbers are the number of hits of TCA Corpus AND each individual term of the Option

This is based on the data from OpenAlex using API calls to get the count.

Show the code
strategies_options <- readRDS(file.path("tca_corpus", "data", "strategies_options.rds"))

lapply(
    names(strategies_options),
    function(strategy) {
        res <- data.frame(
            Strategy = strsplit(strategy, " \\|\\|\\| ")[[1]][1],
            Concept = strsplit(strategy, " \\|\\|\\| ")[[1]][2],
            Term = strategies_options[[strategy]]$assess_search_terms$term,
            Count = strategies_options[[strategy]]$assess_search_terms$count
        )
    }
) |>
    do.call(what = rbind) |>
    IPBES.R::table_dt(
        fn = "strategies_options_assessment_terms",
        fixedColumns = list(leftColumns = 2)
    )

Differences between Original and shortened search terms

Due to length constraints, search terms were removed by removing the ones with the mallest number of hits.

The differences the original search term and the used search term is shown below

Show the code
#|

diffviewer::visual_diff(
    file.path("tca_corpus", "input", "search terms", "strategies_options.org.md"),
    file.path("tca_corpus", "input", "search terms", "strategies_options.md")
)

Counts over Years for each TCA Corpus AND Strategies / Options

Show the code
#|
# data from OpernAlex vie count
# strategies_options <- readRDS(file.path("tca_corpus", "data", "strategies_options.rds"))

# data from corpora
strategies_options <- readRDS(file.path("tca_corpus", "data", "strategies_options_corpus.rds"))

lapply(
    names(strategies_options),
    function(strategy) {
        data.frame(
            Strategy = strsplit(strategy, " \\|\\|\\| ")[[1]][1],
            Concept = strsplit(strategy, " \\|\\|\\| ")[[1]][2],
            Year = strategies_options[[strategy]]$years$publication_year,
            Count = strategies_options[[strategy]]$years$count
        )
    }
) |>
    do.call(what = rbind) |>
    IPBES.R::table_dt(
        fn = "strategies_options_counts_per_year",
        fixedColumns = list(leftColumns = 2)
    )
Show the code
readRDS(file.path("tca_corpus", "data", "strategies_options_cases.rds"))$strategies_options_case |>
    dplyr::mutate(
        p_cases = round(p_cases, 4)
    ) |>
    IPBES.R::table_dt(
        fn = "strategies_options__cases",
        fixedColumns = list(leftColumns = 0)
    )

Matrix showing overlap of Strategies / Options

The size of the nodes indicates the number of works in each node, while the thicknes of the edges (lines) indicates the proportion of overlapping works of the maximum possible, i.e. \(p_{i,j} = \frac{n_{\text{links}(i,j)}}{\min(n_i, n_j)}\)

The nodes can be moved and if selected, the links to / from that node are highlighted.

Show the code
#|

fn <- file.path("tca_corpus", "figures", "strategies_options_interactive_matrix")

if (!file.exists(paste0(fn, ".html"))) {
    data <- readRDS(file.path("tca_corpus", "data", "strategies_options_overlap.rds"))

    value <- diag(data)

    for (i in 1:ncol(data)) {
        for (j in 1:nrow(data)){
            data[i, j] <- data[i, j] / min(value[i], value[j])
        }
    }

    # Create a graph from the adjacency matrix
    g <- igraph::graph_from_adjacency_matrix(
        data,
        mode = "max",
        weighted = TRUE,
        diag = FALSE
    )

    # Convert the graph to a data frame
    nodes <- data.frame(
        id = igraph::V(g)$name,
        label = igraph::V(g)$name,
        value = value
    ) # |>
    # arrange(desc(value))

    edges <- igraph::as_data_frame(
        g,
        what = "edges"
    )

    names(edges) <- c("from", "to", "width")
    edges$width <- (edges$width / max(edges$width)) * 20

    nodes$strategy <- sapply(strsplit(nodes$id, " \\|\\|\\| "), `[`, 1)
    nodes$option <- sapply(strsplit(nodes$id, " \\|\\|\\| "), `[`, 2)
    nodes$option <- sapply(
        strsplit(nodes$option, "\\. |: "),
        function(x) {
            return(x[length(x)])
        }
    )

    colors <- rainbow(length(nodes$strategy)) # Generate a color for each strategy
    names(colors) <- nodes$strategy
    nodes$color <- colors[nodes$strategy]

    nodes$label <- sapply(
        strsplit(nodes$option, "\\. |: "),
        function(x) {
            return(x[length(x)])
        }
    )

    # Calculate grid positions for the nodes

    node_x <- 1:length(unique(nodes$strategy))
    names(node_x) <- unique(nodes$strategy)
    nodes$x <- node_x[nodes$strategy] * 300

    node_y <- 1:length(unique(nodes$option))
    offset <- 0
    for (strategy in unique(nodes$strategy)) {
        id_s <- nodes$strategy == strategy
        names(node_y) <- unique(nodes$option[id_s])
        nodes$y[id_s] <- (node_y[nodes$option[id_s]] + offset) * 200
        if (offset == 0.4) {
            offset <- 0
        } else {
            offset <- 0.4
        }
    }

    # Center the nodes
    nodes$x <- (nodes$x - max(nodes$x) / 2) / 3
    nodes$y <- (nodes$y - max(nodes$y) / 2) / 3

    # Create the interactive network graph

    p <- visNetwork(
        nodes,
        edges,
        height = "900px",
        width = "1800px"
    ) |>
        visNodes(
            x = nodes$x,
            y = nodes$y,
            fixed = FALSE,
            physics = FALSE,
            font = list(
                size = 10
            )
        ) |>
        visEdges(
            physics = TRUE,
            color = list(
                color = "lightgray",
                highlight = "black"
            )
        ) |>
        visPhysics(
            solver = "barnesHut",
            timestep = 0.1,
            stabilization = list(
                iterations = 1000
            )
        )

    htmlwidgets::saveWidget(
        p,
        file = paste0(fn, ".html")
    )
    webshot::webshot(paste0(fn, ".html"), file = paste0(fn, ".pdf"), delay = 3)

    unlink(paste0(fn, "_files"), recursive = TRUE)
}

To open the interactive graph or to download it, click here

To download a high resolution pdf, click here

Show the code
#|

readRDS(file.path("tca_corpus", "data", "strategies_options_overlap.rds")) |>
    IPBES.R::table_dt(
        fn = "strategies_options_overlap",
        fixedColumns = list(leftColumns = 0)
    )

Matrix showing overlap of Strategies / Options Cases Only

The size of the nodes indicates the number of works in each node, while the thicknes of the edges (lines) indicates the proportion of overlapping works of the maximum possible, i.e. \(p_{i,j} = \frac{n_{\text{links}(i,j)}}{\min(n_i, n_j)}\)

The nodes can be moved and if selected, the links to / from that node are highlighted.

Show the code
#|

fn <- file.path("tca_corpus", "figures", "strategies_options_interactive_matrix_cases")

if (!file.exists(paste0(fn, ".html"))) {
    data <- readRDS(file.path("tca_corpus", "data", "strategies_options_overlap_cases.rds"))

    value <- diag(data)

    for (i in 1:ncol(data)) {
        for (j in 1:nrow(data)){
            data[i, j] <- data[i, j] / min(value[i], value[j])
        }
    }

    # Create a graph from the adjacency matrix
    g <- igraph::graph_from_adjacency_matrix(
        data,
        mode = "max",
        weighted = TRUE,
        diag = FALSE
    )

    # Convert the graph to a data frame
    nodes <- data.frame(
        id = igraph::V(g)$name,
        label = igraph::V(g)$name,
        value = value
    ) # |>
    # arrange(desc(value))

    edges <- igraph::as_data_frame(
        g,
        what = "edges"
    )

    names(edges) <- c("from", "to", "width")
    edges$width <- (edges$width / max(edges$width)) * 20

    nodes$strategy <- sapply(strsplit(nodes$id, " \\|\\|\\| "), `[`, 1)
    nodes$option <- sapply(strsplit(nodes$id, " \\|\\|\\| "), `[`, 2)
    nodes$option <- sapply(
        strsplit(nodes$option, "\\. |: "),
        function(x) {
            return(x[length(x)])
        }
    )

    colors <- rainbow(length(nodes$strategy)) # Generate a color for each strategy
    names(colors) <- nodes$strategy
    nodes$color <- colors[nodes$strategy]

    nodes$label <- sapply(
        strsplit(nodes$option, "\\. |: "),
        function(x) {
            return(x[length(x)])
        }
    )

    # Calculate grid positions for the nodes

    node_x <- 1:length(unique(nodes$strategy))
    names(node_x) <- unique(nodes$strategy)
    nodes$x <- node_x[nodes$strategy] * 300

    node_y <- 1:length(unique(nodes$option))
    offset <- 0
    for (strategy in unique(nodes$strategy)) {
        id_s <- nodes$strategy == strategy
        names(node_y) <- unique(nodes$option[id_s])
        nodes$y[id_s] <- (node_y[nodes$option[id_s]] + offset) * 200
        if (offset == 0.4) {
            offset <- 0
        } else {
            offset <- 0.4
        }
    }

    # Center the nodes
    nodes$x <- (nodes$x - max(nodes$x) / 2) / 3
    nodes$y <- (nodes$y - max(nodes$y) / 2) / 3

    # Create the interactive network graph

    p <- visNetwork(
        nodes,
        edges,
        height = "900px",
        width = "1800px"
    ) |>
        visNodes(
            x = nodes$x,
            y = nodes$y,
            fixed = FALSE,
            physics = FALSE,
            font = list(
                size = 10
            )
        ) |>
        visEdges(
            physics = TRUE,
            color = list(
                color = "lightgray",
                highlight = "black"
            )
        ) |>
        visPhysics(
            solver = "barnesHut",
            timestep = 0.1,
            stabilization = list(
                iterations = 1000
            )
        )

    htmlwidgets::saveWidget(
        p,
        file = paste0(fn, ".html")
    )
    webshot::webshot(paste0(fn, ".html"), file = paste0(fn, ".pdf"), delay = 3)

    unlink(paste0(fn, "_files"), recursive = TRUE)
}

To open the interactive graph or to download it, click here

To download a high resolution pdf, click here

Show the code
#|

readRDS(file.path("tca_corpus", "data", "strategies_options_overlap_cases.rds")) |>
    IPBES.R::table_dt(
        fn = "strategies_options_overlap_cases",
        fixedColumns = list(leftColumns = 1)
    )

Actors for transformative change

The file actors.md contains the terms for the different actors.

I will now iterate through all of them and identify the number of hits per individual search term. This can be used as a result in itself in interpreting the importance of each term as well as to shorten the search term to be able to use it together with the TCA search term.

Methods

Prepare Search Terms

Show the code
fn <- file.path("tca_corpus", "data", "actors_terms.rds")
if (!file.exists(fn)) {

     sts <- data.frame(
        "Sector" = NA,
        "Actor_Group" = NA,
        term = params$sts_actors
    )
    sts <- sts[sts$term != "", ]
    for (i in 1:nrow(sts)) {
        if (grepl("^# ", sts$term[i])) {
            sector <- gsub("^# ", "", sts$term[i])
        } else if (grepl("^## ", sts$term[i])) {
            actor_group <- gsub("^## ", "", sts$term[i])
        } else {
            sts$Sector[i] <- sector
            sts$Actor_Group[i] <- actor_group
        }
    }
    sts <- sts[!is.na(sts$Sector), ]
    sts <- sts[!is.na(sts$Actor_Group), ]

    sts$Name <- paste0(sts$Sector, " ||| ", sts$Actor_Group)

    actors_terms <- split(sts$term, sts$Name)
    #############

    saveRDS(actors_terms, file = fn)
}

Run the search terms

Show the code
fn <- file.path("tca_corpus", "data", "actors.rds")
if (!file.exists(file.path(fn))) {
    actors_terms <- readRDS(file.path("tca_corpus", "data", "actors_terms.rds"))
    actors_options <- lapply(
        names(actors_terms),
        function(actor) {
            message("- ", actor)
            result <- list()
            result$term <- paste(actors_terms[[actor]], collapse = " ")
            result$count <- NA
            result$years <- data.frame(publication_year = NA, count = NA)
            result$assess_search_terms <- assess_search_term(
                st = actors_terms[[actor]],
                AND_term = params$s_1_tca_corpus,
                remove = " OR$",
                excl_others = FALSE,
                verbose = FALSE,
                mc.cores = params$mc.cores
            ) |>
                dplyr::arrange(desc(count))
            #
            try(
                {
                    result$count <- openalexR::oa_fetch(
                        title_and_abstract.search = IPBES.R::compact(paste0("(", params$s_1_tca_corpus, ") AND (", result$term, ")")),
                        count_only = TRUE,
                        output = "list",
                        verbose = FALSE
                    )$count
                    message("  - ", result$count, " hits")
                    #
                    result$years <- openalexR::oa_fetch(
                        title_and_abstract.search = IPBES.R::compact(paste0("(", params$s_1_tca_corpus, ") AND (", result$term, ")")),
                        group_by = "publication_year",
                        output = "dataframe",
                        verbose = FALSE
                    ) |>
                        dplyr::select(
                            publication_year = key_display_name,
                            count
                        ) |>
                        dplyr::arrange(
                            publication_year
                        )
                },
                silent = FALSE
            )
            return(result)
        }
    )

    # Assign the names to the first and second level list
    names(actors_options) <- names(actors_terms)

    saveRDS(actors_options, file = fn)
}

Download Actors Corpus (only ids)

Show the code
#|

tic()

actors_terms <- readRDS(file.path("tca_corpus", "data", "actors_terms.rds"))
lapply(
    names(actors_terms),
    function(actor) {
        message("- ", actor)
        IPBES.R::corpus_download(
            pages_dir = paste0(params$pages_actors_dir, "_", make.names(actor)),
            title_and_abstract_search = IPBES.R::compact(paste0("(", params$s_1_tca_corpus, ") AND (", paste0(actors_terms[[actor]], collapse = " "), ")")),
            select_fields = c("id"),
            continue = TRUE,
            delete_pages_dir = FALSE,
            dry_run = FALSE,
            verbose = FALSE,
            mc_cores = 8
        )
    }
)

toc()

Convert Actors Pages to rds (only ids)

Show the code
#|

tic()

fn <- file.path("tca_corpus", "data", "actors_ids.rds")

if (!file.exists(fn)) {
    actors_terms <- readRDS(file.path("tca_corpus", "data", "actors_terms.rds"))
    actors_ids <- lapply(
        names(actors_terms),
        function(actor) {
            message("- ", actor)
            paste0(params$pages_actors_dir, "_", make.names(actor)) |>
                list.files(
                    pattern = ".rds$",
                    recursive = TRUE,
                    full.names = TRUE
                ) |>
                sapply(
                    FUN = function(f) {
                        readRDS(f)
                    }
                ) |>
                unlist() |>
                as.vector() |>
                unique()
        }
    )
    names(actors_ids) <- names(actors_terms)

    saveRDS(actors_ids, file = fn)
}

toc()
0.001 sec elapsed

Convert Actors Pages in Cases to rds (only ids)

Show the code
#|

fn <- file.path("tca_corpus", "data", "actors_ids_cases.rds")

if (!file.exists(fn)) {
    case_ids <- corpus_read(params$corpus_cases_dir) |>
        dplyr::distinct(id) |>
        collect() |>
        unlist()
    actors_ids <- readRDS(file.path("tca_corpus", "data", "actors_ids.rds"))

    actors_ids_cases <- lapply(
        actors_ids,
        function(actor) {
            intersect(actor, case_ids)
        }
    )

    saveRDS(actors_ids_cases, file = fn)
}

Extract per year from Actors Pages

Show the code
#|

tic()

fn <- file.path("tca_corpus", "data", "actors_corpus.rds")

if (!file.exists(fn)) {
    actors_terms <- readRDS(file.path("tca_corpus", "data", "actors_terms.rds"))
    actors_ids <- readRDS(file.path("tca_corpus", "data", "actors_ids.rds"))

    actors_corpus <- lapply(
        names(actors_terms),
        function(actor) {
            message("- ", actor)
            years <- paste0(params$pages_actors_dir, "_", make.names(actor)) |>
                list.files(
                    pattern = "^set_publication_year=",
                    recursive = FALSE,
                    full.names = FALSE
                ) |>
                gsub(
                    pattern = "set_publication_year=",
                    replacement = ""
                ) |>
                as.integer()
            #
            result <- list()
            result$term <- paste(actors_terms[[actor]], collapse = " ")
            result$count <- length(actors_ids[[actor]])

            result$years <- data.frame(
                publication_year = years,
                count = sapply(
                    years,
                    function(year) {
                        paste0(params$pages_actors_dir, "_", make.names(actor)) |>
                            list.files(
                                pattern = ".rds$",
                                recursive = TRUE,
                                full.names = TRUE
                            ) |>
                            grep(
                                pattern = paste0("set_publication_year=", year),
                                value = TRUE
                            ) |>
                            sapply(
                                FUN = function(f) {
                                    readRDS(f)
                                }
                            ) |>
                            unlist() |>
                            as.vector() |>
                            unique() |>
                            length()
                    }
                )
            )
            return(result)
        }
    )

    names(actors_corpus) <- names(actors_terms)

    saveRDS(actors_corpus, file = fn)
}

toc()
0.001 sec elapsed

Create Actors Matrix

Show the code
#|

fn <- file.path("tca_corpus", "data", "actors_overlap.rds")

if (!file.exists(fn)) {
    actors_ids <- readRDS(file.path("tca_corpus", "data", "actors_ids.rds"))

    overlap_count <- function(x, y) {
        length(intersect(x, y))
    }

    actors_overlap <- outer(
        actors_ids,
        actors_ids,
        Vectorize(overlap_count)
    )
    
    for (i in 1:length(dimnames(actors_overlap))) {
        dimnames(actors_overlap)[[i]] <- dimnames(actors_overlap)[[i]] |>
            gsub(
                pattern = "NGO", 
                replacement = "Non-governmental organizations"
            ) |>
            gsub(
                pattern = "Indigenous people", 
                replacement = "Indigenous Peoples"
            )   
    }

    saveRDS(actors_overlap, file = fn)
    write.csv(actors_overlap, file = gsub("rds$", "csv", fn))
}

Actors in Case Corpus

Show the code
fn <- file.path("tca_corpus", "data", "actors_case.rds")

if (!file.exists(fn)) {
    case_ids <- corpus_read(params$corpus_cases_dir) |>
        dplyr::distinct(id) |>
        collect() |>
        unlist()
    actors_ids <- readRDS(file.path("tca_corpus", "data", "actors_ids.rds"))

    actors_case <- lapply(
        names(actors_ids),
        function(actor) {
            message("- ", actor)
            count <- sum(actors_ids[[actor]] %in% case_ids)
            data.frame(
                actor = actor,
                count_cases = count,
                count_tca = length(actors_ids[[actor]]),
                p_cases = count / length(actors_ids[[actor]])
            )
        }
    ) |>
        do.call(what = rbind)

    actors_cases <- list(
        timestamp = Sys.time(),
        actors_case = actors_case
    )

    saveRDS(actors_cases, file = fn)
}

Create Actors Matrix Cases Only

Show the code
#|

fn <- file.path("tca_corpus", "data", "actors_overlap_cases.rds")

if (!file.exists(fn)) {
    actors_ids <- readRDS(file.path("tca_corpus", "data", "actors_ids_cases.rds"))

    overlap_count <- function(x, y) {
        length(intersect(x, y))
    }

    actors_overlap <- outer(
        actors_ids,
        actors_ids,
        Vectorize(overlap_count)
    )

    for (i in 1:length(dimnames(actors_overlap))) {
        dimnames(actors_overlap)[[i]] <- dimnames(actors_overlap)[[i]] |>
            gsub(
                pattern = "NGO", 
                replacement = "Non-governmental organizations"
            ) |>
            gsub(
                pattern = "Indigenous people", 
                replacement = "Indigenous Peoples"
            )   
    }

    saveRDS(actors_overlap, file = fn)
    write.csv(actors_overlap, file = gsub("rds$", "csv", fn))
    
    rm(actors_overlap)
}

Results

Count of Actors Table

Show the code
#|

# data from OpernAlex vie count
# actors <- readRDS(file.path("tca_corpus", "data", "actors.rds"))

# data from corpora
actors <- readRDS(file.path("tca_corpus", "data", "actors_corpus.rds"))

data <- lapply(
    names(actors),
    function(actor) {
        data.frame(
            Actor = actor,
            Count = actors[[actor]]$count,
            Count_until_1992 = sum(actors[[actor]]$years$count[actors[[actor]]$years$publication_year <= 1992]),
            Count_after_1992 = sum(actors[[actor]]$years$count[actors[[actor]]$years$publication_year > 1992])
        )
    }
) |>
    do.call(what = rbind)

data |>
    IPBES.R::table_dt(
        fn = "strategies_options_counts",
        fixedColumns = list(leftColumns = 2)
    )

Assessment of individual terms

These numbers are the number of hits of TCA Corpus AND each individual term of the Option

Show the code
actors <- readRDS(file.path("tca_corpus", "data", "actors.rds"))

lapply(
    names(actors),
    function(actor) {
        res <- data.frame(
            Actor = actor,
            Term = actors[[actor]]$assess_search_terms$term,
            Count = actors[[actor]]$assess_search_terms$count
        )
    }
) |>
    do.call(what = rbind) |>
    IPBES.R::table_dt(
        fn = "actors_assessment_terms",
        fixedColumns = list(leftColumns = 2)
    )

Differences between original and shortened search terms

Due to length constraints, search terms were removed by removing the ones with the smallest number of hits.

The differences the original search term and the used search term is shown below

Show the code
#|

diffviewer::visual_diff(
    file.path("tca_corpus", "input", "search terms", "actors.org.md"),
    file.path("tca_corpus", "input", "search terms", "actors.md")
)

Counts over Years for each TCA Corpus AND Actors

Show the code
#|

# data from OpernAlex vie count
# actors <- readRDS(file.path("tca_corpus", "data", "actors.rds"))

# data from corpora
actors <- readRDS(file.path("tca_corpus", "data", "actors_corpus.rds"))

lapply(
    names(actors),
    function(actor) {
        data.frame(
            Actor = actor,
            Year = actors[[actor]]$years$publication_year,
            Count = actors[[actor]]$years$count
        )
    }
) |>
    do.call(what = rbind) |>
    IPBES.R::table_dt(
        fn = "actors_counts_per_year",
        fixedColumns = list(leftColumns = 2)
    )

Plot of the Count of the Actors split at 1992

This data is corrected for different research oputput before and after 1992 by dividing by the overall reasarch output in that perio as reflected on OpenAlex.

Show the code
#|

figname <- file.path("tca_corpus", "figures", "actors_time_split")

figs <- list.files(
    path = dirname(figname),
    pattern = basename(figname),
    recursive = TRUE
) |> length()

if (figs < 6) {
    # data from OpernAlex vie count
    # actors <- readRDS(file.path("tca_corpus", "data", "actors.rds"))

    # data from corpora
    actors <- readRDS(file.path("tca_corpus", "data", "actors_corpus.rds"))

    oa <- openalexR::oa_fetch(
        search = "",
        group_by = "publication_year",
        output = "dataframe",
        verbose = FALSE
    )
    oa_until_1992 <- sum(oa$count[oa$key <= 1992])
    oa_after_1992 <- sum(oa$count[oa$key > 1992])

    data <- lapply(
        names(actors),
        function(actor) {
            data.frame(
                Actor = actor,
                Count = actors[[actor]]$count,
                Count_until_1992 = sum(actors[[actor]]$years$count[actors[[actor]]$years$publication_year <= 1992]),
                Count_after_1992 = sum(actors[[actor]]$years$count[actors[[actor]]$years$publication_year > 1992])
            )
        }
    ) |>
        do.call(what = rbind) |>
        dplyr::mutate(
            Count_until_1992 = Count_until_1992 / oa_until_1992,
            Count_after_1992 = Count_after_1992 / oa_after_1992,
        ) |>
        dplyr::group_by(
            Actor
        ) |>
        dplyr::mutate(
            Count_until_1992_p = Count_until_1992 / sum(Count_until_1992 + Count_after_1992),
            Count_after_1992_p = Count_after_1992 / sum(Count_until_1992 + Count_after_1992)
        )

    data$Actor <- gsub("Indigenous people", "Indigenous Peoples", data$Actor)
    data$Actor <- gsub("NGO", "Non-governmental organizations", data$Actor)
    data$Actor <- gsub("\\|\\|\\|", "\n", data$Actor)
    data$Actor <- data$Actor |> as.factor()
    levels(data$Actor) <- rev(levels(data$Actor))

    figure <- data |>
        tidyr::pivot_longer(
            cols = c(Count_until_1992, Count_after_1992),
            names_to = "Period",
            values_to = "Count_year"
        ) |>
        # Create the plot
        ggplot(aes(x = Actor, y = Count_year, fill = Period)) +
        geom_bar(stat = "identity") +
        theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
        labs(x = "Actors", y = "Count", fill = "Period") +
        coord_flip() + 
        theme(legend.position = "bottom")

    ggplot2::ggsave(
        paste0(figname, ".pdf"),
        width = 8,
        height = 8,
        figure
    )
    ggplot2::ggsave(
        paste0(figname, ".png"),
        width = 8,
        height = 8,
        figure
    )
    ggplot2::ggsave(
        paste0(figname, ".jpg"),
        width = 8,
        height = 8,
        quality = 100,
        figure
    )

    figure <- data |>
        tidyr::pivot_longer(
            cols = c(Count_until_1992_p, Count_after_1992_p),
            names_to = "Period",
            values_to = "Count_p_year"
        ) |>
        # Create the plot
        ggplot(aes(x = Actor, y = Count_p_year, fill = Period)) +
        geom_bar(stat = "identity") +
        theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
        labs(x = "Actor", y = "Count", fill = "Period") +
        coord_flip() + 
        theme(legend.position = "bottom")

    ggplot2::ggsave(
        paste0(figname, "_p.pdf"),
        width = 8,
        height = 8,
        figure
    )
    ggplot2::ggsave(
        paste0(figname, "_p.png"),
        width = 8,
        height = 8,
        figure
    )
    ggplot2::ggsave(
        paste0(figname, "_p.jpg"),
        width = 8,
        height = 8,
        quality = 100,
        figure
    )

}

The graph shows the by overall research output corrected publications before and after 1992 for each Actor

To download in high resolution, click here

The second graph shows the proportion of the by overall research output corrected publications before and after 1992 for each Actor

To download in high resolution, click here

Show the code
readRDS(file.path("tca_corpus", "data", "actors_case.rds"))$actors_case |>
    dplyr::mutate(
        p_cases = round(p_cases, 4)
    ) |>
    IPBES.R::table_dt(
        fn = "actors_cases",
        fixedColumns = list(leftColumns = 0)
    )

Matrix showing overlap of Actors

The size of the nodes indicates the number of works in each node, while the thicknes of the edges (lines) indicates the proportion of overlapping works of the maximum possible, i.e. \(p_{i,j} = \frac{n_{\text{links}(i,j)}}{\min(n_i, n_j)}\)

The nodes can be moved and if selected, the links to / from that node are highlighted.

Show the code
#|

fn <- file.path("tca_corpus", "figures", "actors_interactive_matrix")

if (!file.exists(paste0(fn, ".html"))) {
    data <- readRDS(file.path("tca_corpus", "data", "actors_overlap.rds"))

    value <- diag(data)

    for (i in 1:ncol(data)) {
        for (j in 1:nrow(data)) {
            data[i, j] <- data[i, j] / min(value[i], value[j])
        }
    }

    # Create a graph from the adjacency matrix
    g <- igraph::graph_from_adjacency_matrix(
        data,
        mode = "max",
        weighted = TRUE,
        diag = FALSE
    )

    # Convert the graph to a data frame
    nodes <- data.frame(
        id = igraph::V(g)$name,
        label = igraph::V(g)$name,
        value = value
    )
    edges <- igraph::as_data_frame(
        g,
        what = "edges"
    )

    names(edges) <- c("from", "to", "width")
    edges$width <- (edges$width / max(edges$width)) * 20

    nodes$sector <- sapply(strsplit(nodes$label, " \\|\\|\\| "), `[`, 1)
    nodes$actor_group <- sapply(strsplit(nodes$label, " \\|\\|\\| "), `[`, 2)

    colors <- rainbow(length(nodes$sector)) # Generate a color for each sector
    names(colors) <- nodes$sector
    nodes$color <- colors[nodes$sector]

    nodes$label <- nodes$option

    # Calculate grid positions for the nodes
    node_x <- 1:length(unique(nodes$sector))
    names(node_x) <- unique(nodes$sector)
    nodes$x <- node_x[nodes$sector] * 300

    node_y <- 1:length(unique(nodes$actor_group))
    offset <- 0
    for (sector in unique(nodes$sector)) {
        id_s <- nodes$sector == sector
        names(node_y) <- unique(nodes$actor_group[id_s])
        nodes$y[id_s] <- (node_y[nodes$actor_group[id_s]] + offset) * 200
        if (offset == 0.5) {
            offset <- 0
        } else {
            offset <- 0.5
        }
    }

    # Center the nodes
    nodes$x <- nodes$x - max(nodes$x) / 2
    nodes$y <- nodes$y - max(nodes$y) / 2

    nodes$label <- nodes$actor_group

    # Create the interactive network graph

    p <- visNetwork(
        nodes,
        edges,
        height = "900px",
        width = "1800px"
    ) |>
        visNodes(
            x = nodes$x,
            y = nodes$y,
            fixed = FALSE,
            physics = FALSE,
            font = list(
                size = 24
            )
        ) |>
        visEdges(
            physics = TRUE,
            color = list(
                color = "lightgray",
                highlight = "black"
            )
        ) |>
        visPhysics(
            solver = "barnesHut",
            timestep = 0.1,
            stabilization = list(
                iterations = 1000
            )
        )

    htmlwidgets::saveWidget(
        p,
        file = paste0(fn, ".html")
    )
    webshot::webshot(paste0(fn, ".html"), file = paste0(fn, ".pdf"), delay = 3)
    webshot::webshot(paste0(fn, ".html"), file = paste0(fn, ".jpg"), delay = 3)
    webshot::webshot(paste0(fn, ".html"), file = paste0(fn, ".png"), delay = 3)
    unlink(paste0(fn, "_files"), recursive = TRUE)
}

To open the interactive graph or to download it, click here

To download a high resolution pdf, click here

Show the code
#|

readRDS(file.path("tca_corpus", "data", "actors_overlap.rds")) |>
    IPBES.R::table_dt(
        fn = "actors_overlap",
        fixedColumns = list(leftColumns = 0)
    )

Matrix showing overlap of Actors Cases Only

The size of the nodes indicates the number of works in each node, while the thicknes of the edges (lines) indicates the proportion of overlapping works of the maximum possible, i.e. \(p_{i,j} = \frac{n_{\text{links}(i,j)}}{\min(n_i, n_j)}\)

The nodes can be moved and if selected, the links to / from that node are highlighted.

Show the code
#|

fn <- file.path("tca_corpus", "figures", "actors_interactive_matrix_cases")

if (!file.exists(paste0(fn, ".html"))) {
    data <- readRDS(file.path("tca_corpus", "data", "actors_overlap_cases.rds"))

    value <- diag(data)

    for (i in 1:ncol(data)) {
        for (j in 1:nrow(data)) {
            data[i, j] <- data[i, j] / min(value[i], value[j])
        }
    }

    # Create a graph from the adjacency matrix
    g <- igraph::graph_from_adjacency_matrix(
        data,
        mode = "max",
        weighted = TRUE,
        diag = FALSE
    )

    # Convert the graph to a data frame
    nodes <- data.frame(
        id = igraph::V(g)$name,
        label = igraph::V(g)$name,
        value = value
    )
    edges <- igraph::as_data_frame(
        g,
        what = "edges"
    )

    names(edges) <- c("from", "to", "width")
    edges$width <- (edges$width / max(edges$width)) * 20

    nodes$sector <- sapply(strsplit(nodes$label, " \\|\\|\\| "), `[`, 1)
    nodes$actor_group <- sapply(strsplit(nodes$label, " \\|\\|\\| "), `[`, 2)

    colors <- rainbow(length(nodes$sector)) # Generate a color for each sector
    names(colors) <- nodes$sector
    nodes$color <- colors[nodes$sector]

    nodes$label <- nodes$option

    # Calculate grid positions for the nodes
    node_x <- 1:length(unique(nodes$sector))
    names(node_x) <- unique(nodes$sector)
    nodes$x <- node_x[nodes$sector] * 300

    node_y <- 1:length(unique(nodes$actor_group))
    offset <- 0
    for (sector in unique(nodes$sector)) {
        id_s <- nodes$sector == sector
        names(node_y) <- unique(nodes$actor_group[id_s])
        nodes$y[id_s] <- (node_y[nodes$actor_group[id_s]] + offset) * 200
        if (offset == 0.5) {
            offset <- 0
        } else {
            offset <- 0.5
        }
    }

    # Center the nodes
    nodes$x <- nodes$x - max(nodes$x) / 2
    nodes$y <- nodes$y - max(nodes$y) / 2

    nodes$label <- nodes$actor_group

    # Create the interactive network graph

    p <- visNetwork(
        nodes,
        edges,
        height = "900px",
        width = "1800px"
    ) |>
        visNodes(
            x = nodes$x,
            y = nodes$y,
            fixed = FALSE,
            physics = FALSE,
            font = list(
                size = 24
            )
        ) |>
        visEdges(
            physics = TRUE,
            color = list(
                color = "lightgray",
                highlight = "black"
            )
        ) |>
        visPhysics(
            solver = "barnesHut",
            timestep = 0.1,
            stabilization = list(
                iterations = 1000
            )
        )

    htmlwidgets::saveWidget(
        p,
        file = paste0(fn, ".html")
    )
    webshot::webshot(paste0(fn, ".html"), file = paste0(fn, ".pdf"), delay = 3)
    webshot::webshot(paste0(fn, ".html"), file = paste0(fn, ".jpg"), delay = 3)
    webshot::webshot(paste0(fn, ".html"), file = paste0(fn, ".png"), delay = 3)
    unlink(paste0(fn, "_files"), recursive = TRUE)
}

To open the interactive graph or to download it, click here

To download a high resolution pdf, click here

Show the code
#|

readRDS(file.path("tca_corpus", "data", "actors_overlap_cases.rds")) |>
    IPBES.R::table_dt(
        fn = "actors_overlap",
        fixedColumns = list(leftColumns = 1)
    )

Actors versus Stategies / Options

Show the code
fn <- file.path("tca_corpus", "data", "actors_strategies_options_overlap.rds")

if (!file.exists(fn)) {
    actors_ids <- file.path("tca_corpus", "data", "actors_ids.rds") |> readRDS()
    strategies_options_ids <- file.path("tca_corpus", "data", "strategies_options_ids.rds") |> readRDS()
    sapply(actors_ids, function(actor) {
        sapply(strategies_options_ids, function(strategy_option) {
            length(intersect(actor, strategy_option))
        })
    }) |>
        saveRDS(file = fn)
}
Show the code
readRDS(file.path("tca_corpus", "data", "actors_strategies_options_overlap.rds")) |>
    IPBES.R::table_dt(
        fn = "actors_strategies_options_overlap",
        fixedColumns = list(leftColumns = 0)
    )

The colour indicates the proportion of overlapping works of the maximum possible, i.e. \(p_{i,j} = \frac{n_{\text{links}(i,j)}}{\min(n_i, n_j)}\)

Show the code
#|

fn <- file.path("tca_corpus", "figures", "actors_strategies_options_matrix")

n <- list.files(
  path = dirname(fn),
  pattern = paste0(basename(fn), "\\."),
  recursive = TRUE
) |> length()

if (n < 4) {
  plot_heatmap <- function(data, actors_ids, strategies_options_ids, plot_data = NULL) {
    if (is.null(plot_data)) {
      actors_count <- sapply(
        actors_ids,
        length
      )
      strategies_options_count <- sapply(
        strategies_options_ids,
        length
      )

      for (i in 1:length(strategies_options_count)) {
        for (j in 1:length(actors_count)) {
          data[i, j] <- data[i, j] / min(strategies_options_count[i], actors_count[j])
        }
      }
    } else {
      data <- plot_data
    }

    sector <- strsplit(colnames(data), split = "\\ \\|\\|\\|\\ ") |> sapply(FUN = "[[", 1)
    strategy <- strsplit(rownames(data), split = "\\ \\|\\|\\|\\ ") |> sapply(FUN = "[[", 1)

    colnames(data) <- strsplit(colnames(data), split = "\\ \\|\\|\\|\\ ") |>
      sapply(FUN = "[[", 2)
    rownames(data) <- strsplit(rownames(data), split = "\\ \\|\\|\\|\\ ") |>
      sapply(FUN = "[[", 2)

    dat_ggplot <- as.data.frame(as.table(data)) |>
      dplyr::rename("y" = Var1, "x" = Var2, "Proportion" = Freq)

    levels(dat_ggplot$y) <- rownames(data) |>
      gsub(pattern = "Action ", replacement = "")

    p <- dat_ggplot |>
      ggplot(
        aes(x = x, y = y, fill = Proportion)
      ) +
      geom_tile() +
      scale_fill_gradient2(
        low = "#196C71", # Blue color for negative values
        mid = "#f7f7f7", # Light beige color for zero
        high = "#B65719", # Red color for positive values
        midpoint = 0 # Set the midpoint to zero
      ) +
      theme(
        axis.text.x = element_text(angle = 90, hjust = 1)
      ) +
      ggplot2::ylab("Strategies / Actions") +
      ggplot2::xlab("Actors")

    vline <- c(0, diff(as.numeric(factor(sector))) != 0)
    hline <- c(0, diff(as.numeric(factor(strategy))) != 0)

    p <- p + geom_vline(xintercept = 0.5, color = "black")
    for (i in vline * 1:(length(vline))) {
      if (i > 0) {
        p <- p + geom_vline(xintercept = i - 0.5, color = "black")
      }
    }
    p <- p + geom_vline(xintercept = length(vline) + 0.5, color = "black")

    p <- p + geom_hline(yintercept = 0.5, color = "black")
    for (i in hline * 1:(length(hline))) {
      if (i > 0) {
        p <- p + geom_hline(yintercept = i - 0.5, color = "black")
      }
    }
    p <- p + geom_hline(yintercept = length(hline) + 0.5, color = "black")

    text_data <- data.frame(
      text_y = c(24, 19.5, 15, 9, 3.5),
      label = c(
        "1. Place-based actions",
        "2. Changing direct drivers",
        "3. Transforming economic systems",
        "4. Transforming governance systems",
        "5. Shifting vies, values, and paradigms"
      )
    )
    for (i in 1:nrow(text_data)) {
      p <- p +
        geom_text(
          y = text_data$text_y[[i]],
          x = 0.6,
          label = text_data$label[[i]],
          size = 3,
          hjust = 0
        )
    }

    text_data <- data.frame(
      text_x = c(3.5, 8, 11.5, 15.5),
      label = c(
        "Civil society",
        "Private sector",
        "Government sector",
        "Communication and\nknowledge sector"
      )
    )
    for (i in 1:nrow(text_data)) {
      p <- p +
        geom_text(
          y = 25.5,
          x = text_data$text_x[[i]],
          label = text_data$label[[i]],
          size = 3,
          hjust = "middle"
        )
    }

    p <- p +
      scale_y_discrete(
        limits = rev(levels(dat_ggplot$y))
      )

    return(p)
  }

  if (n < 12) {
    p <- plot_heatmap(
      data = readRDS(file.path("tca_corpus", "data", "actors_strategies_options_overlap.rds")),
      actors_ids = readRDS(file.path("tca_corpus", "data", "actors_ids.rds")),
      strategies_options_ids = readRDS(file.path("tca_corpus", "data", "strategies_options_ids.rds"))
    )

    saveRDS(p, paste0(fn, ".ggp"))

    ggplot2::ggsave(
      plot = p,
      paste0(fn, ".pdf"),
      width = 12,
      height = 6
    )
    ggplot2::ggsave(
      plot = p,
      paste0(fn, ".svg"),
      width = 12,
      height = 6
    )
    ggplot2::ggsave(
      plot = p,
      paste0(fn, ".png"),
      width = 12,
      height = 6
    )
  }
}

To download in high resolution, click here

Actors x Stategies / Options Cases Only

Show the code
fn <- file.path("tca_corpus", "data", "actors_strategies_options_overlap_cases.rds")

if (!file.exists(fn)) {
    actors_ids <- file.path("tca_corpus", "data", "actors_ids_cases.rds") |>
        readRDS()

    strategies_options_ids <- file.path("tca_corpus", "data", "strategies_options_ids_cases.rds") |>
        readRDS()

    sapply(actors_ids, function(actor) {
        sapply(strategies_options_ids, function(strategy_option) {
            length(intersect(actor, strategy_option))
        })
    }) |>
        saveRDS(file = fn)
}
Show the code
readRDS(file.path("tca_corpus", "data", "actors_strategies_options_overlap_cases.rds")) |>
    IPBES.R::table_dt(
        fn = "actors_strategies_options_overlap_cases",
        fixedColumns = list(leftColumns = 0)
    )

The colour indicates the proportion of overlapping works of the maximum possible, i.e. \(p_{i,j} = \frac{n_{\text{links}(i,j)}}{\min(n_i, n_j)}\)

Show the code
#|

fn <- file.path("tca_corpus", "figures", "actors_strategies_options_matrix_cases")

n <- list.files(
    path = dirname(fn),
    pattern = paste0(basename(fn), "\\."),
    recursive = TRUE
) |> length()

if (n < 4) {
    p <- plot_heatmap(
        data = readRDS(file.path("tca_corpus", "data", "actors_strategies_options_overlap_cases.rds")),
        actors_ids = readRDS(file.path("tca_corpus", "data", "actors_ids_cases.rds")),
        strategies_options_ids = readRDS(file.path("tca_corpus", "data", "strategies_options_ids_cases.rds"))
    )

    saveRDS(p, paste0(fn, ".ggp"))

    ggplot2::ggsave(
        plot = p,
        paste0(fn, ".pdf"),
        width = 12,
        height = 6
    )
    ggplot2::ggsave(
        plot = p,
        paste0(fn, ".svg"),
        width = 12,
        height = 6
    )
    ggplot2::ggsave(
        plot = p,
        paste0(fn, ".png"),
        width = 12,
        height = 6
    )
}

To download in high resolution, click here

Different Cases / all

The colour indicates s indicates the proportion of overlapping works of the maximum possible, i.e. \(p_{i,j} = \frac{n_{\text{links}(i,j)}}{\min(n_i, n_j)}\)

Show the code
#|

fn <- file.path("tca_corpus", "figures", "actors_strategies_options_matrix_difference")

n <- list.files(
    path = dirname(fn),
    pattern = basename(fn),
    recursive = TRUE
) |> length()

if (n < 4) {
    data <- readRDS(file.path("tca_corpus", "data", "actors_strategies_options_overlap.rds"))

    actors_count <- sapply(
        readRDS(file.path("tca_corpus", "data", "actors_ids.rds")),
        length
    )
    strategies_options_count <- sapply(
        readRDS(file.path("tca_corpus", "data", "strategies_options_ids.rds")),
        length
    )

    for (i in 1:length(strategies_options_count)) {
        for (j in 1:length(actors_count)) {
            data[i, j] <- data[i, j] / min(strategies_options_count[i], actors_count[j])
        }
    }

    rm(actors_count, strategies_options_count)

    ####

    data_cases <- readRDS(file.path("tca_corpus", "data", "actors_strategies_options_overlap_cases.rds"))

    actors_count <- sapply(
        readRDS(file.path("tca_corpus", "data", "actors_ids_cases.rds")),
        length
    )
    strategies_options_count <- sapply(
        readRDS(file.path("tca_corpus", "data", "strategies_options_ids_cases.rds")),
        length
    )

    for (i in 1:length(strategies_options_count)) {
        for (j in 1:length(actors_count)) {
            data_cases[i, j] <- data_cases[i, j] / min(strategies_options_count[i], actors_count[j])
        }
    }
    rm(actors_count, strategies_options_count)

    ####

    data <- data - data_cases
    rm(data_cases)

    ####

    p <- plot_heatmap(
        plot_data = data
    )

    saveRDS(p, paste0(fn, ".ggp"))

    ggplot2::ggsave(
        plot = p,
        paste0(fn, ".pdf"),
        width = 12,
        height = 6
    )
    ggplot2::ggsave(
        plot = p,
        paste0(fn, ".svg"),
        width = 12,
        height = 6
    )
    ggplot2::ggsave(
        plot = p,
        paste0(fn, ".png"),
        width = 12,
        height = 6
    )
}

To download in high resolution, click here

Combined Actors versus Stategies Panel

Show the code
#|

fn <- file.path("tca_corpus", "figures", "actors_strategies_options_combined_panel")

no_bn <- list.files(
  path = dirname(fn),
  pattern = basename(fn)
) |> length()

if (no_bn < 4) {
  p_tca <- readRDS(file.path("tca_corpus", "figures", "actors_strategies_options_matrix.ggp")) +
    theme(
      legend.position = "none"
    )
  p_cases <- readRDS(file.path("tca_corpus", "figures", "actors_strategies_options_matrix_cases.ggp")) +
    theme(
      axis.title.y = element_blank(),
      axis.text.y = element_blank()
    )
  p_diff <- readRDS(file.path("tca_corpus", "figures", "actors_strategies_options_matrix_difference.ggp"))

  p <- (p_tca | p_cases) /
    p_diff +
    plot_layout(
      heights = c(0.5, 1)
    )

  ####

  saveRDS(
    p,
    paste0(fn, ".ggp")
  )

  ggplot2::ggsave(
    plot = p,
    paste0(fn, ".pdf"),
    width = 17,
    height = 18
  )
  ggplot2::ggsave(
    plot = p,
    paste0(fn, ".svg"),
    width = 17,
    height = 18
  )
  ggplot2::ggsave(
    plot = p,
    paste0(fn, ".png"),
    width = 17,
    height = 18
  )
}

To download in high resolution pdf, click here

To download in high resolution svg, click here

Works not mentioning Actors and Strategies / Options

Show the code
#|
fn <- file.path("tca_corpus", "data", "works_not_mentioning_actors_strategies_options.rds")

if (file.exists(fn)) {
  data <- readRDS(fn)
} else {
  ids <- list(
    strategies = file.path("tca_corpus", "data", "strategies_options_ids.rds") |>
      readRDS() |>
      unlist(),
    actors = file.path("tca_corpus", "data", "actors_ids.rds") |>
      readRDS() |>
      unlist(),
    strategies_cases = file.path("tca_corpus", "data", "strategies_options_ids_cases.rds") |>
      readRDS() |>
      unlist(),
    actors_cases = file.path("tca_corpus", "data", "actors_ids_cases.rds") |>
      readRDS() |>
      unlist()
  )

  data <- list(
    data.frame(
      type = "TCA Corpus not in Strategies / Options",
      not_in_corpus = params$corpus_dir |>
        corpus_read() |>
        distinct(id) |>
        filter(!id %in% ids$strategies) |>
        collect() |>
        nrow(),
      corpus_size = params$corpus_dir |>
        corpus_read() |>
        distinct(id) |>
        collect() |>
        nrow()
    ),
    data.frame(
      type = "TCA Corpus not in Actors",
      not_in_corpus = params$corpus_dir |>
        corpus_read() |>
        distinct(id) |>
        filter(!id %in% ids$actors) |>
        collect() |>
        nrow(),
      corpus_size = params$corpus_dir |>
        corpus_read() |>
        distinct(id) |>
        collect() |>
        nrow()
    ),
    data.frame(
      type = "TCA Corpus not in neither",
      not_in_corpus = params$corpus_dir |>
        corpus_read() |>
        distinct(id) |>
        filter(!id %in% c(ids$strategies, ids$actors)) |>
        collect() |>
        nrow(),
      corpus_size = params$corpus_dir |>
        corpus_read() |>
        distinct(id) |>
        collect() |>
        nrow()
    ),
    data.frame(
      type = "Cases Corpus not in Strategies / Options",
      not_in_corpus = params$corpus_cases_dir |>
        corpus_read() |>
        distinct(id) |>
        filter(!id %in% ids$strategies_cases) |>
        collect() |>
        nrow(),
      corpus_size = params$corpus_cases_dir |>
        corpus_read() |>
        distinct(id) |>
        collect() |>
        nrow()
    ),
    data.frame(
      type = "Cases Corpus not in Actors",
      not_in_corpus = params$corpus_cases_dir |>
        corpus_read() |>
        distinct(id) |>
        filter(!id %in% ids$actors_cases) |>
        collect() |>
        nrow(),
      corpus_size = params$corpus_cases_dir |>
        corpus_read() |>
        distinct(id) |>
        collect() |>
        nrow()
    ),
    data.frame(
      type = "Cases Corpus not in neither",
      not_in_corpus = params$corpus_dir |>
        corpus_read() |>
        distinct(id) |>
        filter(!id %in% c(ids$strategies, ids$actors)) |>
        collect() |>
        nrow(),
      corpus_size = params$corpus_cases_dir |>
        corpus_read() |>
        distinct(id) |>
        collect() |>
        nrow()
    )
  ) |>
    do.call(what = rbind) |>
    mutate(
      proportion = not_in_corpus / corpus_size
    )

  saveRDS(data, file = fn)
}

data |>
  knitr::kable()
type not_in_corpus corpus_size proportion
TCA Corpus not in Strategies / Options 3876757 4227047 0.9171313
TCA Corpus not in Actors 2951942 4227047 0.6983462
TCA Corpus not in neither 2760687 4227047 0.6531006
Cases Corpus not in Strategies / Options 34274 45037 0.7610187
Cases Corpus not in Actors 16172 45037 0.3590825
Cases Corpus not in neither 2760687 45037 61.2981993

Dendrograms

Strategies Dendrogram

Show the code
#|
sts <- data.frame(
    "Strategy" = NA,
    "Option" = NA,
    term = params$sts_strategies_options |>
        gsub(pattern = "\"", replacement = "") |>
        gsub(pattern = " OR$", replacement = "")
)

sts <- sts[sts$term != "", ]
for (i in 1:nrow(sts)) {
    if (grepl("^# ", sts$term[i])) {
        strategy <- gsub("^# ", "", sts$term[i]) |>
            gsub(pattern = "\"", replacement = "") |>
            gsub(pattern = " OR$", replacement = "")
    } else if (grepl("^## ", sts$term[i])) {
        option <- gsub("^## ", "", sts$term[i]) |>
            gsub(pattern = "\"", replacement = "") |>
            gsub(pattern = " OR$", replacement = "")
    } else {
        sts$Strategy[i] <- strategy
        sts$Option[i] <- option
    }
}
sts <- sts[!is.na(sts$Strategy), ]
sts <- sts[!is.na(sts$Option), ]
Show the code
#|


fn <- file.path("tca_corpus", "figures", "strategies_options_dendrogram_interactive.html")
if (!file.exists(fn)) {
    p <- collapsibleTree::collapsibleTree(
        sts,
        hierarchy = c("Strategy", "Option", "term")
    )

    htmlwidgets::saveWidget(
        p,
        file = fn
    )

    unlink(file.path("tca_corpus", "figures", "strategies_options_dendrogram_interactive_files"), recursive = TRUE)
}

To open the interactive graph or to download it, click here

Show the code
if (length(list.files(file.path("tca_corpus", "figures"), pattern = "strategies_options_dendrogram_circular")) < 2) {
    strategies_options_tree <- data.frame(
        from = c(rep("x", length(sts$Strategy)), sts$Strategy),
        to = c(sts$Strategy, sts$Option)
    ) |>
        dplyr::distinct()

    vertices <- data.frame(
        names = unique(c(strategies_options_tree$from, strategies_options_tree$to)),
        to = unique(c(strategies_options_tree$from, strategies_options_tree$to))
    )
    vertices$color <- ifelse(vertices$names %in% sts$Strategy, "blue", "red")
    vertices$hjust <- 0.5
    vertices$vjust <- 0
    vertices$vjust[grep("5)", vertices$to)] <- -0.3
    # vertices$hjust[grep("5)", vertices$to)] <- 1
    vertices$vjust[grep("1)", vertices$to)] <- 1
    vertices$to[grep("5)", vertices$to)] <- gsub(", and", ",\nand", vertices$to[grep("5)", vertices$to)])
    vertices$to[grep("5)", vertices$to)] <- gsub("ion and", "ion\nand", vertices$to[grep("5)", vertices$to)])

    tree <- igraph::graph_from_data_frame(
        d = strategies_options_tree,
        vertices = vertices
    )

    p <- ggraph::ggraph(
        tree,
        layout = "dendrogram",
        circular = TRUE
    ) +
        ggraph::geom_edge_diagonal() +
        ggraph::geom_node_label(
            ggplot2::aes(
                label = to,
                colour = color,
                vjust = vjust,
                hjust = hjust
            ),
            angle = 0
        ) +
        ggplot2::ylim(-1, 1) +
        ggplot2::xlim(-1.5, 1.5)

    ggplot2::ggsave(
        plot = p,
        file.path("tca_corpus", "figures", "strategies_options_dendrogram_circular.pdf"),
        width = 12,
        height = 6
    )
    ggplot2::ggsave(
        plot = p,
        file.path("tca_corpus", "figures", "strategies_options_dendrogram_circular.png"),
        width = 12,
        height = 6
    )
}

To download in high resolution, click here

Actors Dendrogram

Show the code
#|
sts <- data.frame(
    "Sector" = NA,
    "Actor_Group" = NA,
    term = params$sts_actors |>
        gsub(pattern = "\"", replacement = "") |>
        gsub(pattern = " OR$", replacement = "")
)

sts <- sts[sts$term != "", ]
for (i in 1:nrow(sts)) {
    if (grepl("^# ", sts$term[i])) {
        sector <- gsub("^# ", "", sts$term[i]) |>
            gsub(pattern = "\"", replacement = "") |>
            gsub(pattern = " OR$", replacement = "")
    } else if (grepl("^## ", sts$term[i])) {
        actor <- gsub("^## ", "", sts$term[i]) |>
            gsub(pattern = "\"", replacement = "") |>
            gsub(pattern = " OR$", replacement = "")
    } else {
        sts$Sector[i] <- sector
        sts$Actor_Group[i] <- actor
    }
}
sts <- sts[!is.na(sts$Sector), ]
sts <- sts[!is.na(sts$Actor_Group), ]
Show the code
#|


fn <- file.path("tca_corpus", "figures", "actors_dendrogram_interactive.html")
if (!file.exists(fn)) {
    p <- collapsibleTree::collapsibleTree(
        sts,
        hierarchy = c("Sector", "Actor_Group", "term")
    )

    htmlwidgets::saveWidget(
        p,
        file = fn
    )

    unlink(file.path("tca_corpus", "figures", "actors_dendrogram_interactive_files"), recursive = TRUE)
}

To open the interactive graph or to download it, click here

Show the code
if (length(list.files(file.path("tca_corpus", "figures"), pattern = "actors_dendrogram_circular")) < 2) {
    actors_tree <- data.frame(
        from = c(rep("x", length(sts$Sector)), sts$Sector),
        to = c(sts$Sector, sts$Actor_Group)
    ) |>
        dplyr::distinct()

    vertices <- data.frame(
        names = unique(c(actors_tree$from, actors_tree$to)),
        to = unique(c(actors_tree$from, actors_tree$to))
    )
    vertices$color <- ifelse(vertices$names %in% sts$Sector, "blue", "red")
    vertices$hjust <- 0.5
    vertices$vjust <- 0
    vertices$vjust[grep("5)", vertices$to)] <- -0.3
    # vertices$hjust[grep("5)", vertices$to)] <- 1
    vertices$vjust[grep("1)", vertices$to)] <- 1
    vertices$to[grep("5)", vertices$to)] <- gsub(", and", ",\nand", vertices$to[grep("5)", vertices$to)])
    vertices$to[grep("5)", vertices$to)] <- gsub("ion and", "ion\nand", vertices$to[grep("5)", vertices$to)])

    tree <- igraph::graph_from_data_frame(
        d = actors_tree,
        vertices = vertices
    )

    p <- ggraph::ggraph(
        tree,
        layout = "dendrogram",
        circular = TRUE
    ) +
        ggraph::geom_edge_diagonal() +
        ggraph::geom_node_label(
            ggplot2::aes(
                label = to,
                colour = color,
                vjust = vjust,
                hjust = hjust
            ),
            angle = 0
        ) +
        ggplot2::ylim(-1, 1) +
        ggplot2::xlim(-1.5, 1.5)

    ggplot2::ggsave(
        plot = p,
        file.path("tca_corpus", "figures", "actors_dendrogram_circular.pdf"),
        width = 12,
        height = 6
    )
    ggplot2::ggsave(
        plot = p,
        file.path("tca_corpus", "figures", "actors_dendrogram_circular.png"),
        width = 12,
        height = 6
    )
}

To download in high resolution, click here

Parking Lot - Analysis amd Figures

Assessment of Search Terms Using OpenAlex

Search Terms

Here are the search terms used in this document. They were provided by the authors, and some adaptations were done by the tsu for data and knowledge management to adopt them for OpenAlex.

Transformative Change

Show the code
cat(params$s_1_transformative_change)
(
    (
        (
            transformation
            OR transition
            OR transformative
            OR "transformative change"
        )
        OR (
            (
                shift
                OR change
            )
            AND (
                fundamental
                OR deep
                OR radical
            )
        )
    )
    AND (
        socio
        OR social
        OR politics
        OR political
        OR governance
        OR economic
        OR cultural
        OR system
        OR technological
        OR inner
        OR personal
        OR financial
        OR business
    )
)
OR (
    (
        "transformative change"
        OR "deliberate transformation"
        OR "transformative turn"
        OR transition
        OR "social-ecological change"
        OR "deep change"
        OR "fundamental alteration"
        OR "profound change"
        OR "profound transformation"
        OR "radical transformation"
        OR "transformational change"
        OR "complete change"
        OR "complete transformation"
        OR "drastic change"
        OR "in-depth transformation"
        OR "progressive change"
        OR "radical alteration"
        OR "radical change"
        OR "revolutionary change"
        OR "significant modification"
        OR "total transformation"
        OR transition
        OR pathway
        OR power
        OR agency
        OR scale
        OR leverage
        OR context
        OR process
        OR regime
        OR shift
        OR views
        OR value
        OR structure
        OR institution
        OR deliberate
        OR structural
        OR fundamental
        OR system
        OR deep
        OR radical
        OR profound
        OR drastic
        OR widespread
        OR political
        OR economical
        OR structur
        OR complete
        OR progressive
        OR revolutionary
        OR substantial
        OR significant
    )
    AND (
        transformation
        OR alteration
        OR change
        OR turn
        OR action
        OR transition
        OR shift
    )
)

Nature

Show the code
#|

cat(params$s_1_nature_environment)
biodiversity
OR marine
OR terrestrial
OR forest
OR woodland
OR grassland
OR savanna
OR shrubland
OR peatland
OR ecosystem
OR lake
OR river
OR sea
OR ocean
OR meadow
OR heathland
OR mires
OR bog
OR tundra
OR biosphere
OR desert
OR mountain
OR "natural resource"
OR estuary
OR fjord
OR fauna
OR flora
OR soil
OR "coastal waters"
OR wetland
OR freshwater
OR marshland
OR marches
OR dryland
OR seascape
OR landscape
OR coast
OR "arable land"
OR "agricultural land"
OR "natural environment"
OR "environmental resource"
OR agroforest
OR "agro-forest"
OR plantation
OR "protected areas"
OR chaparral
OR sustainable
OR environment
OR conservation
OR ecosystem
OR nature
OR planet
OR Earth
OR biosphere
OR ecological
OR "socio-ecological"
OR restoration
OR wildlife
OR landscape
OR species
OR bioeconomy
OR "resource system"
OR "coupled system"
OR nature

Assessment Corpus

Show the code
#|

cat(params$s_1_tca_corpus)
( biodiversity
OR marine
OR terrestrial
OR forest
OR woodland
OR grassland
OR savanna
OR shrubland
OR peatland
OR ecosystem
OR lake
OR river
OR sea
OR ocean
OR meadow
OR heathland
OR mires
OR bog
OR tundra
OR biosphere
OR desert
OR mountain
OR "natural resource"
OR estuary
OR fjord
OR fauna
OR flora
OR soil
OR "coastal waters"
OR wetland
OR freshwater
OR marshland
OR marches
OR dryland
OR seascape
OR landscape
OR coast
OR "arable land"
OR "agricultural land"
OR "natural environment"
OR "environmental resource"
OR agroforest
OR "agro-forest"
OR plantation
OR "protected areas"
OR chaparral
OR sustainable
OR environment
OR conservation
OR ecosystem
OR nature
OR planet
OR Earth
OR biosphere
OR ecological
OR "socio-ecological"
OR restoration
OR wildlife
OR landscape
OR species
OR bioeconomy
OR "resource system"
OR "coupled system"
OR nature ) 
AND 
( (
    (
        (
            transformation
            OR transition
            OR transformative
            OR "transformative change"
        )
        OR (
            (
                shift
                OR change
            )
            AND (
                fundamental
                OR deep
                OR radical
            )
        )
    )
    AND (
        socio
        OR social
        OR politics
        OR political
        OR governance
        OR economic
        OR cultural
        OR system
        OR technological
        OR inner
        OR personal
        OR financial
        OR business
    )
)
OR (
    (
        "transformative change"
        OR "deliberate transformation"
        OR "transformative turn"
        OR transition
        OR "social-ecological change"
        OR "deep change"
        OR "fundamental alteration"
        OR "profound change"
        OR "profound transformation"
        OR "radical transformation"
        OR "transformational change"
        OR "complete change"
        OR "complete transformation"
        OR "drastic change"
        OR "in-depth transformation"
        OR "progressive change"
        OR "radical alteration"
        OR "radical change"
        OR "revolutionary change"
        OR "significant modification"
        OR "total transformation"
        OR transition
        OR pathway
        OR power
        OR agency
        OR scale
        OR leverage
        OR context
        OR process
        OR regime
        OR shift
        OR views
        OR value
        OR structure
        OR institution
        OR deliberate
        OR structural
        OR fundamental
        OR system
        OR deep
        OR radical
        OR profound
        OR drastic
        OR widespread
        OR political
        OR economical
        OR structur
        OR complete
        OR progressive
        OR revolutionary
        OR substantial
        OR significant
    )
    AND (
        transformation
        OR alteration
        OR change
        OR turn
        OR action
        OR transition
        OR shift
    )
) )

Chapter 1

01

Show the code
#|

cat(params$s_1_ch1_01)
(
    root
    OR underlying
    OR indirect
)
AND (
    driver
    OR cause
)

02

Show the code
#|

cat(params$s_1_ch1_02)
equity
OR inequity
OR just
OR unjust
OR inequality
OR equality
OR Fair
OR unfair

03

Show the code
#|

cat(params$s_1_ch1_03)
scale
OR impact
OR leapfrog
OR transfer

04

Show the code
#|

cat(params$s_1_ch1_04)
inclusive
OR participation
OR participatory
OR engagement
OR democratic
OR coproduct
OR transdisc
OR multiactor
OR "multi-actor"
OR integrat

05

Show the code
#|

cat(params$s_1_ch1_05)
evaluate
OR reflex
OR reflect
OR monitor
OR adapt
OR learn

06

Show the code
#|

cat(params$s_1_ch1_06)
responsib
OR accountable
OR rights
OR steward
OR reciprocity
OR interdependent
OR interdependency
OR (
    relation
    OR relational
    OR plural
    OR diverse
    OR "sustainability-aligned"
    OR (
        care
        AND (
            value
            OR ethic
        )
    )
)

Chapter 2

Show the code
#|

cat(params$s_1_ch2)
vision
OR future
OR visionary
OR scenarios
OR imagination
OR imagery
OR creativity
OR desire
OR wish
OR visioning
OR process
OR "participaory process"
OR "deliberate process"
OR polics
OR target
OR view
OR value
OR cosmovision
OR cosmocentric
OR dream
OR fiction
OR hope
OR mission
OR objective
OR story
OR worldview
OR aspiration
OR action
OR plan
OR strategy
OR intention
OR model
OR solution
OR innovation
OR perspective
OR platform
OR collective action
OR cooperation
OR consultation
OR coalition
OR response
OR movement
OR effort
OR initiative
OR activity
OR reaction
OR performance
OR operation
OR effect
OR task
OR project
OR influence
OR moment
OR discourse
OR motivation
OR iteration
OR roadmap
OR agenda
OR project
OR programm
OR government
OR technique
OR inspiration
OR culture
OR universe
OR reality
OR fantasy
OR perception
OR visualization
OR approach
OR image
OR arquetype
OR existence
OR cosmology
OR co - production
OR knowledge
OR dialogue
OR transmission
OR conceptual
OR ceremony
OR relationships
OR respect
OR reciprocity
OR responsibilities
OR solidarity
OR harmony
OR self - determination
OR community
OR spiritual
OR languague
OR territory
OR opportunity
OR sight
OR foresight
OR idea
OR appearance

Chapter 3

01

Show the code
#|

cat(params$s_1_ch3_01)
Technology
OR Science
OR "science-society"
OR "science-technology"
OR Solution

02

Show the code
#|

cat(params$s_1_ch3_02)
"co-create"
OR "co-creation"
OR solution
OR knowledge
OR system
OR "t-lab"
OR "technology laboratory"
OR education
OR "socio-technical"

03

Show the code
#|

cat(params$s_1_ch3_03)
System
OR pathways
OR connect
OR Agroecolog
OR Institutional
OR Institution
OR Government

04

Show the code
#|

cat(params$s_1_ch3_04)
inner
OR Personal
OR Religion
OR Love
OR Loving
OR Feelings
OR Stewardship
OR Care
OR Beliefs
OR Belief
OR believe
OR Awareness
OR "Self-Awareness"

05

Show the code
#|

cat(params$s_1_ch3_05)
Worldviews
OR Grassroot
OR "Community-based"
OR Indigenous
OR Leadership
OR "Critical Science"
OR Econfeminism
OR "Political Ecology"
OR Power
OR Agency
OR Environment

06

Show the code
#|

cat(params$s_1_ch3_06)
Economic
OR "Political Economy"
OR institution
OR govern
OR economy
OR governance
OR government
OR globalization
OR states
OR colonial
OR colonialiasism
OR labour
OR organization
OR organisation

Chapter 4

01

Show the code
#|

cat(params$s_1_ch4_01)
(
    challenge
    OR barrier
    OR obstacle
    OR hinder
    OR hindrance
    OR block
    OR prevent
    OR deter
    OR inertia
    OR "path dependence"
    OR "path dependency"
    OR stasis
    OR "lock-in"
    OR trap
    OR habits
    OR habitual
    OR "status quo"
    OR power
    OR "limiting factOR"
)
AND (
    economic inequality
    OR "Wealth concentration"
    OR "Socioeconomic inequality"
    OR financialization
    OR "uneven development"
    OR Financialization
    OR "Structural adjustment"
    OR "Sovereign Debt"
    OR inequality
    OR "Policy effectiveness"
)

02

Show the code
#|

cat(params$s_1_ch4_02)
(
    challenge
    OR barrier
    OR obstacle
    OR hinder
    OR hindrance
    OR block
    OR prevent
    OR deter
    OR inertia
    OR "path dependence"
    OR "path dependency"
    OR stasis
    OR "lock-in"
    OR trap
    OR habits
    OR habitual
    OR status quo
    OR power
    OR "limiting factor"
)
AND (
    "clean technology"
    OR "clean innovation*"
    OR "sustainable innovation"
    OR "sustainable technological innovation"
)
AND (
    "limited access"
    OR "limited availability"
    OR "lack of access"
    OR "unavailability"
)

Art

Show the code
#|

cat(params$st_art)
Painting OR
Sculpture OR
Photography OR
Drawing OR
Printmaking OR
Ceramics OR
Performance art OR
"Digital art" OR
Figurative OR
Contemporary OR
Gallery OR
Exhibition OR
"Art history" OR
"Fine arts" OR 
"Art critique" OR
Collage OR
"Street art" OR
Portraiture OR
Minimalism OR
Surrealism OR
Expressionism OR
"Art therapy" OR
"Art education" OR
"Public art" OR
"Art collecting" OR
"Art fairs" OR
"Modern art" OR
Renaissance
Baroque OR
Impressionism OR
Cubism OR
Realism OR
"Art movements" OR
"Conceptual art" OR
"Art funding" OR
"Art workshops" OR
"Art communities" OR
"Art criticism" OR
"Eco art" OR
"Folk art" OR
Muralism OR
"Art residence"

Media

Show the code
#|

cat(params$st_media)
Journalism OR
Broadcasting OR
"Social media" OR
"Digital media" OR
Multimedia OR
News OR
Film OR
Television OR
Radio OR
"Mass communication" OR
"Media ethics" OR
"Public relations" OR
"Media studies" OR
"Media literacy" OR
"Media production" OR
Newspapers OR
Magazines OR
"Media law" OR
"Media platforms" OR
"Media technology" OR
"Cultural media" OR
"Mobile media" OR
Documentary OR
Webcasting OR
"Live streaming" OR
Vlogs OR
"Media campaigns" OR
"Digital storytelling" OR
"Media management" OR
"Media psychology" OR
"Media convergence" OR
"Media networking" OR
"Influencer marketing" OR
"Data journalism" OR
"Media activism" OR
"Citizen journalism" OR
Press OR
"News outlets" OR
"Media outlets"

Strategies and Options

In contrast to the other search terms, this option contains multiple sets of search terms

Show the code
#|

cat(params$sts_strategies_options)
# Strategy 1: Conserving and regenerating places of value to nature and people  ## Action 1.1: Recognizing and conserving "territories of life"  "Biocultural conservation" OR "Biosphere reserve" OR "Community-based management" OR "Community-led conservation" OR "Community protocol" OR "Community quota" OR "Convivial conservation" OR "Comanagement" OR "Customary tenure" OR "Indigenous and community conserved area" OR "Indigenous jurisdiction" OR "Indigenous-led conservation" OR "Multi-functional landscape" OR "Other effective area-based conservation measure" OR "Resource stewardship" OR "Sacred grove" OR "Sacred site" OR "Territories of life" OR "Tribal park"  ## Action 1.2: Enhancing rights-based approaches  "Access and benefit sharing" OR "Community rights" OR "Ecocide" OR "Food sovereignty" OR "Free prior and informed consent" OR "FPIC" OR "Human rights" OR "Indigenous language" OR "Indigenous Peoples’ rights" OR "Indigenous data sovereignty" OR "Intellectual property rights" OR "Civil and political rights" OR "Economic social and cultural rights" OR "International human rights" OR "International Labour Organization Convention" OR "Land sovereignty" OR "Legal pluralism" OR "Nature rights" OR "Rights of nature" OR "Right to water" OR "Tenure rights" OR "Territorial use rights" OR "Rights of Indigenous Peoples"  OR "UNDRIP"  ## Action 1.3a: Basing conservation on diverse values of nature. Conservation  "Blue park" OR "Ethical space" OR "Forest conservation" OR "Forest reserve" OR "Habitat protection" OR "High sea conservation" OR "Marine managed area" OR "Marine park" OR "Marine protected area" OR "Marine reserve" OR "National park" OR "Nature reserve" OR "Private reserve" OR "Protected area" OR "Recreation area" OR "Transboundary protected area" OR "Wildlife conservation" OR "Wildlife reserve"  ## Action 1.3b: Basing conservation on diverse values of nature. Management and monitoring  "Coastal governance" OR "Coastal management" OR "Coastal monitoring" OR "Ecosystem-based management" OR "Environmental impact assessment" OR "Environmental monitoring" OR "Environmental remote sensing" OR "Fish monitoring" OR "Forest monitoring" OR "Integrated coastal zone management" OR "Integrated landscape management" OR "Invasive alien species management" OR "Land monitoring" OR "Marine governance" OR "Marine mammal monitoring" OR "Marine monitoring" OR "Ocean monitoring" OR "Sustainable land management" OR "Sustainable wildlife management" OR "Species monitoring" OR "Transboundary water management" OR "Watershed management"  ## Action 1.4: Shifting from extractive to regenerative systems  "Biodiversity restoration" OR "Connectivity restoration" OR "Ecosystem restoration" OR "Ecological regeneration" OR "Ecological restoration" OR "Environmental regeneration" OR "Floodplain restoration" OR "Forest restoration" OR "Habitat restoration" OR "Species reintroduction" OR "Landscape restoration" OR "Regenerative agriculture" OR "Regenerative farming" OR "Regenerative sustainability" OR "Remedial action" OR "Rewilding" OR "Soil restoration" OR "Restoration ecology"  OR "Regenerative system"  ## Action 1.5: Advancing integrated spatial planning    "Buffer zone" OR "Coastal planning" OR "Development control regulation" OR "Habitat conservation plan" OR "Holistic planned grazing" OR "Infrastructure planning" OR "Integrated spatial planning" OR "Land law" OR "Land use permit" OR "Land use planning" OR "Marine spatial planning" OR "National biodiversity strategy and action plan" OR "Ocean planning" OR "Participatory planning" OR "Spatial planning" OR "Strategic environmental assessment"  # Strategy 2: Driving systemic change in the sectors most responsible for biodiversity loss and nature’s decline  ## Action 2.1a: Regulating resource extraction. Regulation  "Commodity chain regulation" OR "Consumption regulation" OR "Consumer tax" OR "Consumption tax" OR "Cross-compliance" OR "Emission caps" OR "Invasive species regulation" OR  "Land use regulation" OR "Land acquisition regulation" OR "Licensing and permitting" OR "Logging regulation" OR "Pollution control" OR "Resource extraction regulation" OR "Resource management law" OR "Regulatory measure" OR "Resource capping" OR "Sustainable public procurement" OR "Trade regulation" OR "Wildlife trade regulation" OR "Zoning regulation"  ## Action 2.1b: Regulating resource extraction. Standards and certifications  "Certification" OR "Collaborative supply chain" OR "Ecolabel" OR "Environmental certification" OR "Environmental guideline" OR "Environmental label" OR "Environmental standard" OR "Fair trade certification" OR "Forest stewardship council certification" OR "Green branding" OR "ISO standard" OR "LEED certification" OR "Marine stewardship council certification" OR "Organic certification" OR "Participatory guarantee system" OR "Production standards" OR "Sustainable seafood initiative" OR "Sustainable sourcing" OR "Third-party auditing" OR "Third-party verification" OR "Seafood watch"    ## Action 2.2a: Embedding technology in transformative frameworks. Green technology  "Biofuel" OR "Biomass energy production" OR "Biomimetic" OR "Climate-smart agriculture" OR "Coordinated transport" OR "Cradle-to-cradle" OR "Digital agriculture" OR "Fuel-efficient vehicle" OR "Geothermal energy" OR "Green building material" OR "Green technology" OR "Hybrid vehicle" OR "Microgrid" OR "Minigrid" OR "Renewable energy" OR "Smart technologies" OR "Solar panel" OR "Solar photovoltaic system" OR "Wind turbine"  ## Action 2.2b: Embedding technology in transformative frameworks. Green infrastructure  "Biofilter" OR "Bioswale" OR "Constructed wetland" OR "Energy efficient building" OR "Green architecture" OR "Green infrastructure" OR "Green logistics" OR "Green roof" OR "Green street" OR "Green wall" OR "Living shoreline" OR "Multi-purpose structure" OR "Nature-based solution" OR "Permeable pavement" OR "Public transport" OR "Rain garden" OR "Riparian buffer" OR "Sustainable drainage system" OR "Sustainable infrastructure" OR "Urban agriculture" OR "Urban forest" OR "Urban park" OR "Vegetated swale" OR "Water infrastructure"  ## Action 2.3: Financing for global sustainability  "Biodiversity finance" OR "Climate finance" OR "Conservation finance" OR "Conservation funding" OR "Conservation philanthropy" OR "Conservation trust fund" OR "Debt-for-nature swap" OR "Direct funding to community" OR "Ecological finance" OR "Environmental finance" OR "Environmental harmful subsidies" OR "Harmful subsidies" OR "Nature finance" OR "Lost and damage" OR "Ocean finance" OR "Public funding for conservation" OR "Public-private partnership"  ## Action 2.4: Supporting civil society initiatives  "Boycott" OR "Collective action network" OR "Community garden" OR "Environmental action" OR "Environmental advocacy" OR "Environmental lawsuit" OR "Environmental mobilization" OR "Environmental public interest litigation" OR "Environmental social movement" OR "Farmers market" OR "Food cooperative" OR "Formal petition" OR "Hunger strike" OR "Land occupation" OR "Media-based activism" OR "Name and shame" OR "Non-cooperation" OR "Non-violent protest" OR "Persuasion" OR "Public campaign" OR "Road blockade" OR "Social innovations" OR "Social movement" OR "Strike" OR "Street protest" OR "Transition town" OR "Urban garden"  # Strategy 3: Transforming economic systems for nature and equity  ## Action 3.1: Mainstreaming innovative economic tools  "B-Corp" OR "Biodiversity banking" OR "Biodiversity compensation" OR "Biodiversity mitigation bank" OR "Biodiversity trading" OR  "Cap and trade" OR "Cap and share" OR "Consumer demand for transparency" OR "Convention against corruption" OR "Conflict of interest regulation" OR "Corporate disclosure" OR "Corporate social responsibility" OR "Corporate sustainability reporting" OR "Conservation banking" OR "Environmental mitigation" OR "Financial disclosure" OR "Internalization of externalities" OR "Market-based finance" OR "No net loss" OR "Payment for ecosystem services" OR "Reducing emissions from deforestation and forest degradation" OR "Remediation" OR "True price" OR "Zero deforestation"  ## Action 3.2a: Supporting just transitions. Sustainable production  "Agri-environmental and climate measure" OR "Agroecology" OR "Agroforestry" OR "Biological agriculture" OR "Best practices for production" OR "Carbon farming" OR "Climate-smart agriculture" OR "Community-supported agriculture" OR "Conservation tillage" OR "Crop diversification" OR "Manufacturing best practices" OR "Organic agriculture" OR "Reduced impact logging" OR "Responsible production" OR "Sustainable agricultural intensification" OR "Sustainable aquaculture" OR "Sustainable design" OR "Sustainable fishing" OR "Sustainable production" OR "Sustainable small-scale fishery" OR "Swidden agriculture"  ## Action 3.2b: Supporting just transitions. Alternative economic models  "Alternative business" OR "Alternative economic" OR "Bioeconomy" OR "Business for nature" OR "Caring economy" OR "Circular economy" OR "Circular bioeconomy" OR "Degrowth" OR "Doughnut economics" OR "Economic of biodiversity" OR "Ecological economics" OR "Ecosystem accounting" OR "Governing the commons" OR "Mainstreaming biodiversity" OR "Managing the commons" OR "Nature positive economy" OR "Natural capital accounting" OR "Natural social contract" OR "Not-for-profit economy" OR "Regenerative business" OR "Regenerative capitalism" OR "Relocalize" OR "Sharing economy" OR "Steady state economy" OR "Wellbeing economics"  ## Action 3.3: Reforming financial systems  "Biodiversity offset" OR "Carbon credit" OR "Commodity future" OR "Central bank reform" OR "Debt relief" OR "Debt service suspension" OR "Derivative trading" OR "Ecological fiscal transfer" OR "Environmental tax"  OR "Environmental impact bond" OR "Green subsidy" OR "Green public procurement" OR "Green tax" OR "Global exchange price" OR "IMF reform" OR "Financial reform" OR "Progressive tax"  OR "Tax haven" OR "Reduce inequality" OR "Subsidy reform" OR "Sustainable finance" OR "Tradable permit" OR "Trade ban" OR "Tobin tax" OR "Universal basic income" OR "Wealth tax" OR "WTO reform"  ## Action 3.4: Adopting new metrics of success  "Better Life Index" OR "Ecological footprint" OR "Genuine Progress Indicator" OR "Genuine saving" OR "Green GDP" OR "Gross National Happiness" OR "Happy Planet Index" OR "Human Development Index" OR "Inclusive Wealth Index" OR "Index of Sustainable Economic Welfare" OR "Inequality index" OR "Real wealth" OR "Social Progress Index" OR "Thriving Places Index" OR "System of Environmental Economic Accounting" OR "Wellbeing budget"    # Strategy 4: Transforming governance systems to be inclusive, accountable, and adaptive  ## Action 4.1: Strengthening biodiversity in integrated governance  "Access to justice" OR "Anti-corruption measures" OR "Biodiversity Policy Integration" OR "Convention against corruption" OR "Cross-sectoral coordination" OR "Cross-sectoral planning" OR "Environmental assessment" OR "Institutional arrangement" OR "Institutional independence" OR "Institutional reform" OR "Integrated assessment" OR "Integrated governance" OR "Integrated public governance" OR "Judicial independence" OR "Lobbying regulation" OR "Measures against corruption" OR "Policy coherence" OR "Policy coordination" OR  "Policy Integration" OR "Representing biodiversity values" OR "Strategic planning" OR "Strategic visioning" OR "Transparent governance"  ## Action 4.2.: Engaging diverse actors in inclusive governance  "Biodiversity councils" OR "Bottom-up governance" OR "Citizen assembly" OR "Collaborative agreement" OR "Community meeting" OR "Customary law" OR "Customary norm" OR "Deep democracy" OR "Deliberative democracy" OR "Engagement of Indigenous peoples and local communities" OR "Gender sensitive approaches" OR "Gender responsive governance" OR "Inclusive governance" OR "Indigenous governance" OR "Multi-stakeholder consultation" OR "Multi-stakeholder partnership" OR "New social contract" OR "Participatory decision-making" OR "Policy co-creation" OR "Policy co-design" OR "Public consultation" OR "Public participation" OR "Stakeholder engagement"  ## Action 4.3.: Securing collaboration and accountability in multilateral governance  "Aichi Biodiversity Target" OR "BBNJ Treaty" OR "Bilateral agreements" OR "Convention on Biological Diversity" OR "CBD" OR "Convention on International Trade in Endangered Species" OR "CITES" OR "Convention to Combat Desertification" OR "EU Green Deal" OR "Inclusive global governance" OR "International collaboration" OR "Kyoto Protocol" OR "Minamata Convention" OR "Montreal Protocol" OR "Multilateral agreement" OR "Multilateral governance" OR "Multilevel governance" OR "Nagoya Protocol" OR "Network governance" OR "Paris Agreement" OR "Ramsar Convention" OR "Polycentric governance" OR "Rio Declaration" OR "Rotterdam Convention" OR "Stockholm Convention" OR "Sustainable Development Goal"  ## Action 4.4.: Strengthening learning through informed, accountable, and adaptive governance  "Access to environmental information" OR "Accountable governance" OR "Adaptive governance" OR "Adaptive management" OR "Administrative entrepreneurship" OR "Conflict resolution" OR "Flexible regulation" OR "Freedom of information" OR "Informed governance" OR "Institutional entrepreneurship" OR "Iterative decision making" OR "Iterative planning" OR "Local governance" OR "Monitoring evaluation and learning" OR "Ombudsman" OR "Open government" OR "Overcome path-dependencies" OR "Participatory evaluation" OR "Press freedom" OR "Policy monitoring" OR "Planning monitoring and evaluation" OR "Reflexive governance" OR "Risk management" OR "Whistleblower protection"  # Strategy 5.: Shifting societal views, values, and paradigms to recognize and prioritize the fundamental interconnections between humans and nature that sustain life for all beings  ## Action 5.1.: Increasing nature connectedness  "Balanced relationship" OR "Biophilia" OR "Caring for nature" OR "Connecting with nature" OR "Ecocentrism" OR "Ecohealth" OR "Environmental connection" OR "Environmental stewardship" OR "Harmony with nature" OR "Holistic worldview" OR "Human-nature connectedness" OR "Human-nature relationship" OR "Intrinsic value" OR "Indigenous worldview" OR "Nature connectedness" OR "One health" OR "Planetary health" OR "Planetary wellbeing" OR "Relational values" OR "Spiritual connection" OR "Unitive vision" OR "Utilitarian value"  ## Action 5.2.: Shifting culture through new narratives  "Awareness campaign" OR "Choice architecture" OR "Community dialogue" OR "Cultural narrative" OR "Cultural transformation" OR "Environmental discourse" OR "Environmental narrative" OR "Environmental perspective" OR "Environmental storytelling" OR "Green discourse" OR "Green marketing" OR "Green narrative" OR "Green perspective" OR "Mass media campaign"  OR "Peer-to-peer communication" OR "Regenerative culture" OR  "Unitive narrative" OR "Youth empowerment"  ## Action 5.3.: Changing social norms  "Behavioral nudge" OR "Collaborative consumption" OR "Consumption reduction" OR "Dietary transition" OR "Ethical consumerism" OR "Food waste reduction" OR "Frugal consumption" OR "Green consumption" OR "Localized food system" OR "Lifestyle change" OR "Minimalist lifestyle" OR "Normative feedback" OR "Nudging" OR "Plant-based diet" OR "Reduce consumption" OR "Recycling" OR "Responsible consumption" OR "Reusing" OR "Shared consumption" OR "Shared ownership" OR "Simple living" OR "Sustainable consumption" OR "Sustainable use" OR "Sustainable practices" OR "Zero waste"  ## Action 5.4. Facilitating transformative learning  "Adult learning" OR "Capacity building" OR "Capacity development" OR "Cultural exchange" OR "Cultural revitalization" OR "Environmental curriculum" OR "Environmental education" OR "Experiential learning" OR "Experiential teaching" OR "Inner development" OR "Inner transformation" OR "Indigenous education" OR "Inner capacity" OR "Personal transformation" OR "Practical learning" OR "Sacred teaching" OR "Social learning" OR "Solution space" OR "Transformation lab" OR "Transformative learning" OR "Transformational learning" OR "Unitive education"  ## Action 5.5. Co-creating knowledge  "Art-science collaboration" OR "Boundary spanning" OR "Citizen science" OR "Co-creative inquiry" OR "Co-creation of knowledge" OR "Co-design" OR "Collaborative knowledge production" OR "Collaborative research and learning" OR "Collective knowledge generation" OR "Community-based participatory research" OR "Epistemic justice" OR "Interfaith collaboration" OR "Interfaith dialogue" OR "Joint knowledge development" OR "Jointly constructed knowledge" OR "Knowledge brokerage" OR "Knowledge co-creation" OR "Knowledge co-design" OR "Knowledge coproduction" OR "Mode-2 knowledge production" OR "Multiple evidence-based approach" OR "Participatory action research" OR "Transdisciplinary research" OR "Weaving knowledge"

Chapter 5

Vision

Show the code
#|

cat(params$s_1_ch5_vision)

Case

Show the code
#|

cat(params$s_1_case)
( biodiversity
OR marine
OR terrestrial
OR forest
OR woodland
OR grassland
OR savanna
OR shrubland
OR peatland
OR ecosystem
OR lake
OR river
OR sea
OR ocean
OR meadow
OR heathland
OR mires
OR bog
OR tundra
OR biosphere
OR desert
OR mountain
OR "natural resource"
OR estuary
OR fjord
OR fauna
OR flora
OR soil
OR "coastal waters"
OR wetland
OR freshwater
OR marshland
OR marches
OR dryland
OR seascape
OR landscape
OR coast
OR "arable land"
OR "agricultural land"
OR "natural environment"
OR "environmental resource"
OR agroforest
OR "agro-forest"
OR plantation
OR "protected areas"
OR chaparral
OR sustainable
OR environment
OR conservation
OR ecosystem
OR nature
OR planet
OR Earth
OR biosphere
OR ecological
OR "socio-ecological"
OR restoration
OR wildlife
OR landscape
OR species
OR bioeconomy
OR "resource system"
OR "coupled system"
OR nature ) 
AND 
( (
    (
        (
            transformation
            OR transition
            OR transformative
            OR "transformative change"
        )
        OR (
            (
                shift
                OR change
            )
            AND (
                fundamental
                OR deep
                OR radical
            )
        )
    )
    AND (
        socio
        OR social
        OR politics
        OR political
        OR governance
        OR economic
        OR cultural
        OR system
        OR technological
        OR inner
        OR personal
        OR financial
        OR business
    )
)
OR (
    (
        "transformative change"
        OR "deliberate transformation"
        OR "transformative turn"
        OR transition
        OR "social-ecological change"
        OR "deep change"
        OR "fundamental alteration"
        OR "profound change"
        OR "profound transformation"
        OR "radical transformation"
        OR "transformational change"
        OR "complete change"
        OR "complete transformation"
        OR "drastic change"
        OR "in-depth transformation"
        OR "progressive change"
        OR "radical alteration"
        OR "radical change"
        OR "revolutionary change"
        OR "significant modification"
        OR "total transformation"
        OR transition
        OR pathway
        OR power
        OR agency
        OR scale
        OR leverage
        OR context
        OR process
        OR regime
        OR shift
        OR views
        OR value
        OR structure
        OR institution
        OR deliberate
        OR structural
        OR fundamental
        OR system
        OR deep
        OR radical
        OR profound
        OR drastic
        OR widespread
        OR political
        OR economical
        OR structur
        OR complete
        OR progressive
        OR revolutionary
        OR substantial
        OR significant
    )
    AND (
        transformation
        OR alteration
        OR change
        OR turn
        OR action
        OR transition
        OR shift
    )
) ) 
AND 
( "case study"
AND (
    "field work"
    OR "concrete case"
    OR empirical
    OR "real world example"
    OR observational
    OR practical
    OR experimental
    OR "in  depth"
    OR "real life case"
    OR ethnography
    OR "specific study"
    OR "illustrative example"
) )

Number of Hits per Individual Corpus

Here we show the number of hits for the key papers in the different individual corpi. The columns represent the different search terms as defined in Section 4.3.

Show the code
dat <- cbind(
    search_term_hits
)

rownames(dat) <- dplyr::recode(
    rownames(dat),
    "transformative change" = "Transformative Change @sec-transform",
    "nature environment" = "Nature @sec-nature",
    "tca corpus" = "Assessment Corpus @sec-tca-corpus",
    "Chapter 1 01" = "Ch1 01 @sec-ch1-01",
    "Chapter 1 02" = "Ch1 02 @sec-ch1-02",
    "Chapter 1 03" = "Ch1 03 @sec-ch1-03",
    "Chapter 1 04" = "Ch1 04 @sec-ch1-04",
    "Chapter 1 05" = "Ch1 05 @sec-ch1-05",
    "Chapter 1 06" = "Ch1 06 @sec-ch1-06",
    "Chapter 2" = "Ch2  @sec-ch2",
    "Chapter 3 01" = "Ch3 01 @sec-ch3-01",
    "Chapter 3 02" = "Ch3 02 @sec-ch3-02",
    "Chapter 3 03" = "Ch3 03 @sec-ch3-03",
    "Chapter 3 04" = "Ch3 04 @sec-ch3-04",
    "Chapter 3 05" = "Ch3 05 @sec-ch3-05",
    "Chapter 3 06" = "Ch3 06 @sec-ch3-06",
    "Chapter 4 01" = "Ch4 01 @sec-ch4-01",
    "Chapter 4 02" = "Ch4 02 @sec-ch4-02",
    "Chapter 5 vision" = "Ch5 Vision @sec-ch5_vision",
    "Chapter 5 vision case" = "Ch5 Vision Case @sec-ch5_vision_case",
    "case" = "Ch5 Case @sec-case"
)

dat |>
    knitr::kable(
        caption = "Number of hits",
    )
Number of hits
count db_response_time_ms
oa 253,514,060 20
Transformative Change Section 4.3.1 18,844,396 4253
Nature Section 4.3.2 26,116,505 2682
Assessment Corpus Section 4.3.3 4,720,072 4346
Ch1 01 Section 15.2.4.1 634,602 336
Ch1 02 Section 15.2.4.2 3,263,235 259
Ch1 03 Section 15.2.4.3 16,379,848 614
Ch1 04 Section 15.2.4.4 2,555,891 566
Ch1 05 Section 15.2.4.5 26,437,484 1078
Ch1 06 Section 15.2.4.6 6,595,757 752
Ch2 Section 15.2.5 111,185,757 7004
Ch3 01 Section 15.2.6.1 16,563,322 1031
Ch3 02 Section 15.2.6.2 34,107,427 1589
Ch3 03 Section 15.2.6.3 29,311,181 775
Ch3 04 Section 15.2.6.4 10,906,330 748
Ch3 05 Section 15.2.6.5 13,399,042 929
Ch3 06 Section 15.2.6.6 21,289,270 1438
Ch4 01 Section 15.2.7.1 900,528 969
Ch4 02 Section 15.2.7.2 21 709
Ch5 Case Section 4.3.4 56,210,784 5040
Show the code
rm(dat)

Key Papers in Individual Corpi

Summary

Each column is a different search term, and each row consists of the key papers of a specific chapter and the author who provided the key papers. The number is the number of key papers occurring in the Individual Corpus.

Show the code
in_summary <- grepl("Total|overall", rownames(detail))
knitr::kable(
    detail[in_summary, ]
)
s_1_oa Transformative Change Section 4.3.1 Nature Section 4.3.2 Assessment Corpus Section 4.3.3 Ch1 01 Section 15.2.4.1 Ch1 02 Section 15.2.4.2 Ch1 03 Section 15.2.4.3 Ch1 04 Section 15.2.4.4 Ch1 05 Section 15.2.4.5 Ch1 06 Section 15.2.4.6 Ch2 Section 15.2.5 Ch3 01 Section 15.2.6.1 Ch3 02 Section 15.2.6.2 Ch3 03 Section 15.2.6.3 Ch3 04 Section 15.2.6.4 Ch3 05 Section 15.2.6.5 Ch3 06 Section 15.2.6.6 Ch4 01 Section 15.2.7.1 Ch4 02 Section 15.2.7.2 Ch5 Case Section 4.3.4 Total
overall 253,514,060 18,844,396 26,116,505 4,720,072 634,602 3,263,235 16,379,848 2,555,891 26,437,484 6,595,757 111,185,757 16,563,322 34,107,427 29,311,181 10,906,330 13,399,042 21,289,270 900,528 21 56,210,784
Ch_1 - Total 42 40 41 39 19 28 35 30 31 30 41 30 33 33 22 33 35 28 0 4 593
Ch_2 - Total 22 20 22 20 9 17 18 12 17 18 22 20 19 19 15 21 21 16 0 3 330
Ch_3_Cl_3 - Total 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 3 0 3 70
Ch_3_Cl_4 - Total 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 4 0 1 88
Ch_3_Cl_5 - Total 3 2 3 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 35
Ch_3_Cl_6 - Total 6 6 5 5 1 1 2 3 1 3 5 2 4 5 1 1 5 2 0 1 58
Ch_3 - Total 4 4 4 4 2 1 2 2 3 3 4 3 4 3 1 2 3 2 0 1 51
Ch_4_Cl_1 - Total 7 4 7 4 1 4 5 5 3 5 7 4 4 4 4 6 7 4 0 3 87
Ch_4_Cl_2 - Total 4 3 3 3 2 2 3 1 2 2 3 2 3 3 1 3 3 2 0 0 44
Ch_4_Cl_3 - Total 5 5 5 5 2 2 4 2 3 3 4 3 4 4 3 3 4 2 0 3 65
Ch_4_Cl_4 - Total 4 2 4 2 1 1 3 1 1 2 4 2 1 2 2 2 4 1 0 0 38
Ch_4_Cl_5 - Total 5 3 4 3 1 2 4 2 4 2 5 5 4 4 3 3 5 3 0 0 61
Ch_5 - Total 35 33 33 31 20 23 27 27 26 25 35 29 30 33 26 28 30 20 0 7 517
all - Total 134 120 128 116 60 82 105 87 93 95 130 102 106 110 82 104 118 81 0 26 1878

Detail

Show the code
knitr::kable(
    detail
)
s_1_oa Transformative Change Section 4.3.1 Nature Section 4.3.2 Assessment Corpus Section 4.3.3 Ch1 01 Section 15.2.4.1 Ch1 02 Section 15.2.4.2 Ch1 03 Section 15.2.4.3 Ch1 04 Section 15.2.4.4 Ch1 05 Section 15.2.4.5 Ch1 06 Section 15.2.4.6 Ch2 Section 15.2.5 Ch3 01 Section 15.2.6.1 Ch3 02 Section 15.2.6.2 Ch3 03 Section 15.2.6.3 Ch3 04 Section 15.2.6.4 Ch3 05 Section 15.2.6.5 Ch3 06 Section 15.2.6.6 Ch4 01 Section 15.2.7.1 Ch4 02 Section 15.2.7.2 Ch5 Case Section 4.3.4 Total
overall 253,514,060 18,844,396 26,116,505 4,720,072 634,602 3,263,235 16,379,848 2,555,891 26,437,484 6,595,757 111,185,757 16,563,322 34,107,427 29,311,181 10,906,330 13,399,042 21,289,270 900,528 21 56,210,784
Ch_1 - Click here 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 3
Ch_1 - Click here 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3
Ch_1 - Click here 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4
Ch_1 - Click here 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 4
Ch_1 - Click here 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 5
Ch_1 - Click here 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 6
Ch_1 - Click here 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 7
Ch_1 - Click here 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 7
Ch_1 - Click here 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 8
Ch_1 - Click here 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 8
Ch_1 - Click here 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 9
Ch_1 - Click here 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 11
Ch_1 - Click here 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 11
Ch_1 - Click here 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 13
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 14
Ch_1 - Click here 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 14
Ch_1 - Click here 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 14
Ch_1 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 14
Ch_1 - Click here 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 15
Ch_1 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 15
Ch_1 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 15
Ch_1 - Click here 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 15
Ch_1 - Click here 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 15
Ch_1 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 15
Ch_1 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 16
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
Ch_1 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
Ch_1 - Total 42 40 41 39 19 28 35 30 31 30 41 30 33 33 22 33 35 28 0 4 593
Ch_2 - Click here 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 4
Ch_2 - Click here 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 7
Ch_2 - Click here 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 9
Ch_2 - Click here 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 9
Ch_2 - Click here 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 12
Ch_2 - Click here 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 13
Ch_2 - Click here 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 14
Ch_2 - Click here 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 14
Ch_2 - Click here 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 14
Ch_2 - Click here 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 15
Ch_2 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 15
Ch_2 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_2 - Click here 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 16
Ch_2 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_2 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 16
Ch_2 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_2 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_2 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_2 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_2 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_2 - Click here 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_2 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
Ch_2 - Total 22 20 22 20 9 17 18 12 17 18 22 20 19 19 15 21 21 16 0 3 330
Ch_3_Cl_3 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 15
Ch_3_Cl_3 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_3_Cl_3 - Click here 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_3_Cl_3 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
Ch_3_Cl_3 - Total 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 3 0 3 70
Ch_3_Cl_4 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 16
Ch_3_Cl_4 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_3_Cl_4 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_3_Cl_4 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_3_Cl_4 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_3_Cl_4 - Total 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 4 0 1 88
Ch_3_Cl_5 - Click here 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Ch_3_Cl_5 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_3_Cl_5 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_3_Cl_5 - Total 3 2 3 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 35
Ch_3_Cl_6 - Click here 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 5
Ch_3_Cl_6 - Click here 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 6
Ch_3_Cl_6 - Click here 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 7
Ch_3_Cl_6 - Click here 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 7
Ch_3_Cl_6 - Click here 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 11
Ch_3_Cl_6 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_3_Cl_6 - Total 6 6 5 5 1 1 2 3 1 3 5 2 4 5 1 1 5 2 0 1 58
Ch_3 - Click here 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 7
Ch_3 - Click here 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 8
Ch_3 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 16
Ch_3 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_3 - Total 4 4 4 4 2 1 2 2 3 3 4 3 4 3 1 2 3 2 0 1 51
Ch_4_Cl_1 - Click here 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 4
Ch_4_Cl_1 - Click here 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 4
Ch_4_Cl_1 - Click here 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 6
Ch_4_Cl_1 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_4_Cl_1 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_4_Cl_1 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_4_Cl_1 - Click here 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 17
Ch_4_Cl_1 - Total 7 4 7 4 1 4 5 5 3 5 7 4 4 4 4 6 7 4 0 3 87
Ch_4_Cl_2 - Click here 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ch_4_Cl_2 - Click here 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 9
Ch_4_Cl_2 - Click here 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 15
Ch_4_Cl_2 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_4_Cl_2 - Total 4 3 3 3 2 2 3 1 2 2 3 2 3 3 1 3 3 2 0 0 44
Ch_4_Cl_3 - Click here 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 5
Ch_4_Cl_3 - Click here 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 7
Ch_4_Cl_3 - Click here 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 15
Ch_4_Cl_3 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_4_Cl_3 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_4_Cl_3 - Total 5 5 5 5 2 2 4 2 3 3 4 3 4 4 3 3 4 2 0 3 65
Ch_4_Cl_4 - Click here 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 5
Ch_4_Cl_4 - Click here 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 7
Ch_4_Cl_4 - Click here 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 8
Ch_4_Cl_4 - Click here 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 15
Ch_4_Cl_4 - Total 4 2 4 2 1 1 3 1 1 2 4 2 1 2 2 2 4 1 0 0 38
Ch_4_Cl_5 - Click here 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 6
Ch_4_Cl_5 - Click here 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 6
Ch_4_Cl_5 - Click here 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 15
Ch_4_Cl_5 - Click here 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 15
Ch_4_Cl_5 - Click here 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 15
Ch_4_Cl_5 - Total 5 3 4 3 1 2 4 2 4 2 5 5 4 4 3 3 5 3 0 0 61
Ch_5 - Click here 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2
Ch_5 - Click here 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 3
Ch_5 - Click here 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 7
Ch_5 - Click here 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 7
Ch_5 - Click here 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 7
Ch_5 - Click here 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 8
Ch_5 - Click here 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 9
Ch_5 - Click here 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 10
Ch_5 - Click here 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 11
Ch_5 - Click here 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 11
Ch_5 - Click here 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 12
Ch_5 - Click here 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 13
Ch_5 - Click here 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 0 0 13
Ch_5 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 16
Ch_5 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 16
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 16
Ch_5 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 16
Ch_5 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
Ch_5 - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_5 - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
Ch_5 - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
Ch_5 - Total 35 33 33 31 20 23 27 27 26 25 35 29 30 33 26 28 30 20 0 7 517
all - Click here 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
all - Click here 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
all - Click here 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2
all - Click here 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 3
all - Click here 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3
all - Click here 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 3
all - Click here 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4
all - Click here 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 4
all - Click here 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 4
all - Click here 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 4
all - Click here 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 4
all - Click here 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 5
all - Click here 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 5
all - Click here 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 5
all - Click here 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 6
all - Click here 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 6
all - Click here 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 6
all - Click here 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 6
all - Click here 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 6
all - Click here 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 7
all - Click here 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 7
all - Click here 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 7
all - Click here 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 7
all - Click here 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 7
all - Click here 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 7
all - Click here 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 7
all - Click here 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 7
all - Click here 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 7
all - Click here 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 8
all - Click here 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 8
all - Click here 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 8
all - Click here 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 8
all - Click here 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 9
all - Click here 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 9
all - Click here 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 9
all - Click here 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 9
all - Click here 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 9
all - Click here 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 10
all - Click here 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 11
all - Click here 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 11
all - Click here 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 11
all - Click here 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 11
all - Click here 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 11
all - Click here 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 12
all - Click here 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 12
all - Click here 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 13
all - Click here 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 13
all - Click here 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 13
all - Click here 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 0 0 13
all - Click here 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 14
all - Click here 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 14
all - Click here 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 14
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 14
all - Click here 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 14
all - Click here 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 14
all - Click here 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 14
all - Click here 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 15
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 15
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 15
all - Click here 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 15
all - Click here 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 15
all - Click here 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 15
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 16
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 16
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 16
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 16
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 16
all - Click here 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 16
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 16
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 17
all - Click here 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 17
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
all - Click here 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 18
all - Total 134 120 128 116 60 82 105 87 93 95 130 102 106 110 82 104 118 81 0 26 1878

TCA Corpus properties

Languages in TCA Corpus (from OpenAlex call)

These are the languages of the abstracts and titles. Articles with multiple languages will be regarded as not being accurate. Also, as this is the language of the abstract / title, it might not be the language of the full text.

Show the code
readRDS(file.path(".", "tca_corpus", "data", "tca_corpus_languages.rds"))$languages |>
    IPBES.R::table_dt(
        fn = "languages_tca_corpus"
    )

Countries in TCA Corpus

The countries are based on the countries of the institutes of all authors, weighted by 1/no_ authors_per_paper.

The following calculations were done:

  • **count** =ifelse(is.na(count), 0, count)`
  • **log_count** =log(count + 1)`
  • **p** =count / sum(count)`
  • **count_oa** =ifelse(is.na(count_oa), 0, count)`
  • **log_count_oa** =log(count_oa + 1)`
  • **p_oa** =count_oa / sum(count_oa)`
  • **p_diff** =(p_oa - p) * 100`
  • **p_ratio** =count / count_oa`
Show the code
readRDS(file.path(".", "tca_corpus", "data", "countries_tca_corpus.rds")) |>
    IPBES.R::table_dt(fn = "publications_per_country")

All Years

To download in high resolution, click here

Sectors over time

For clarity, the log of the cumulative sum of the sectors over time are shown here.

The top graph shows only the primary sector assigned, the bottom graph all sectors (first, secondary and tertiary)

To download in high resolution, click here

The graph shows the proportion of the different sectors over time

To download in high resolution, click here

Show the code
readRDS(file.path(".", "tca_corpus", "data", "sectors_over_time.rds")) |>
    IPBES.R::table_dt(
        fn = "sectors_over_time",
        fixedColumns = list(leftColumns = 3)
    )

Topics in Corpus

Show the code
#|

cs <- cumsum(prim_topics_tca_corpus$count)
cs |>
    plot(
        type = "l",
        xlab = "Topic",
        ylab = "Cumulative Count",
        main = "Cumulative Topics in TCA Corpus"
    )

abline(
    h = 0.95 * cs[length(cs)],
    v = min(which(cs > 0.95 * cs[length(cs)])),
    col = "red"
)

text(
    x = 0.5 * length(cs),
    y = 0.95 * cs[length(cs)],
    pos = 3,
    labels = "95% of the corpus",
    col = "red"
)

Show the code
#|

prim_topics_tca_corpus |>
    relocate(count, .after = "id") |>
    IPBES.R::table_dt(
        fn = "topics_tca_corpus",
    )
Warning in instance$preRenderHook(instance): It seems your data is too big for
client-side DataTables. You may consider server-side processing:
https://rstudio.github.io/DT/server.html

SubFields in Corpus

Show the code
#|
cs <- prim_topics_tca_corpus |>
    mutate(
        id = NULL,
        topic_name = NULL,
        keywords = NULL,
        summary = NULL,
        wikipedia_url = NULL
    ) |>
    group_by(
        subfield_id,
    ) |>
    summarise(
        count = sum(count)
    ) |>
    arrange(desc(count)) |>
    dplyr::select(count) |>
    unlist() |>
    cumsum()
cs |>
    plot(
        type = "l",
        xlab = "Subfield",
        ylab = "Cumulative Count",
        main = "Cumulative Subfields in TCA Corpus"
    )

abline(
    h = 0.95 * cs[length(cs)],
    v = min(which(cs > 0.95 * cs[length(cs)])),
    col = "red"
)

text(
    x = 0.5 * length(cs),
    y = 0.95 * cs[length(cs)],
    pos = 3,
    labels = "95% of the corpus",
    col = "red"
)

Show the code
#|

prim_topics_tca_corpus |>
    mutate(
        topic_id = NULL,
        topic_name = NULL,
        keywords = NULL,
        summary = NULL,
        wikipedia_url = NULL
    ) |>
    group_by(
        subfield_id,
        subfield_name,
        field_id,
        field_name,
        domain_id,
        domain_name
    ) |>
    summarise(
        count = sum(count),
        .groups = "drop"
    ) |>
    arrange(desc(count)) |>
    relocate(count, .after = "subfield_id") |>
    DT::datatable(
        extensions = c(
            "Buttons",
            "FixedColumns",
            "Scroller"
        ),
        options = list(
            dom = "Bfrtip",
            buttons = list(
                list(
                    extend = "csv",
                    filename = fn
                ),
                list(
                    extend = "excel",
                    filename = fn
                ),
                list(
                    extend = "pdf",
                    filename = fn,
                    orientation = "landscape",
                    customize = DT::JS(
                        "function(doc) {",
                        "  doc.defaultStyle.fontSize = 5;", # Change the font size
                        "}"
                    )
                ),
                "print"
            ),
            scroller = TRUE,
            scrollY = JS("window.innerHeight * 0.7 + 'px'"),
            scrollX = TRUE,
            fixedColumns = list(leftColumns = 4)
        ),
        escape = FALSE
    )

Reuse

Citation

BibTeX citation:
@report{krug,
  author = {Krug, Rainer M. and Villasante, Sebastian and Lambertucci,
    Sergio and Reyes Garcia, Victoria and Agrawal, Arun and O’Brien,
    Karen and Garibaldi, Lucas},
  title = {Transformative {Change} {Assessment} {Corpus} - {Technical}
    {Background} {Report}},
  doi = {10.5281/zenodo.11389482},
  langid = {en}
}
For attribution, please cite this work as:
Krug, Rainer M., Sebastian Villasante, Sergio Lambertucci, Victoria Reyes Garcia, Arun Agrawal, Karen O’Brien, and Lucas Garibaldi. n.d. “Transformative Change Assessment Corpus - Technical Background Report.” IPBES Transformative Change Assessment. https://doi.org/10.5281/zenodo.11389482.